• Title/Summary/Keyword: Flank Face

Search Result 46, Processing Time 0.021 seconds

A Study on the Performance of CBN Tools in the Machining of Hardened Die-Materials by High-Speed face Milling (금형용 고경도재의 고속정면밀링 가공시 CBN 공구의 성능에 관한 연구)

  • 조성실;임근영;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.26-30
    • /
    • 1996
  • This paper presents the performance of CBN tools in the machining of hardened die-materials, SKD11 and SKD61 steel with HRC 50, by high-speed face milling. Generally, grinding or EDM is being used in machining of hardened materials but the cost is very high. If those can be replaced by cutting, it will be a greatly economical advantage. CBN tool has been recognized as an effective tool in turning, but it has not been in milling. So wear and surface roughness mode of CBN tool for hardened SKD11 and SKD61 steel were investigated by high-speed face milling in this study Also the relation between cutting force and wear mode of CBN tools was investigated.

  • PDF

A Study on the monitoring of tool wear in face milling operation (밀링공구의 마모 감시에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.69-74
    • /
    • 1998
  • In order to monitor the tool wear in milling operation, cutting force is measured as the tool wear increased. The digital signal processing methods are used to detect the tool wear . As AR parameter extract the feature of tool wear , it can be used as input parameter of pattern classifier. The FFT monitor the tool wear exactly , but it can not do real time signal processing. The band energy method can be used to real time monitoring of tool wear ,but int can degrade the exact monitoring.

  • PDF

Study on Effects of Coatings on Cutting Tool Wear (절삭공구의 피복층이 공구마멸에 미치는 영향에 대한 연구)

  • 손태영;양민양
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 1990
  • In order to investigate tribological effects of coatings on different places on tool wear, commercial quality coated inserts were tested in production speed machining after the coatings on clearance or rake face of coated tools were selectively removed. The experimental results demonstrated that the primary role of coatings in tool wear was the reduction of the thermochemical adhesion between the tool material and workpiece. And the coating on rake face was observed to retard the progress of flank wear. In case of machining carbon steel, multicoated tools showed the most favorable results for considering the notch wear.

A Study on Characteristics of Surface Roughness by Cutting Condition Variation in Face Milling (정면밀링가공시 절삭조건 변화에 표면거칠기 특성에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.248-253
    • /
    • 1997
  • The ideal surface roughness is obtained by tool geometry and feed rate in face milling. however actual surface roughness is affected by various factors such as cutting conditions. vibration and used tool. To improve the quality and productivity of the machining parts, lots of research on the evaluation of tool life and control of surface roughness has been required. Therefore, the width of flank wear, cutting force, and surface roughness are monitored to analyse the characteristics of surface roughness. This experimental investigation is mainly focused on the characteristics of surface roughness in multi-insert milling using TiN coated tool.

  • PDF

A Study on Optimal Design of Face Milling Cutter Geometry(II) -With Respect to Toll Life and Surface Roughness- (정면밀링커터의 최적설계에 대한 연구 (2) -공구수명 및 표면조도 중심으로-)

  • 김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2225-2233
    • /
    • 1994
  • In order to improve the cutting ability of face mill, a model for optimal cutter shape was developed to minimize resultant cutting force by combing cutting force model and optimal technique. Wear test and surface roughness test for optimized and conventional cutter were performed. The new optimized cutter shows longer tool life of 2.29 times than conventional cutter in light cutting condition and 2.52 times in heavy cutting condition. The surface roughness of workpiece by optimized cutter is improved in heavy cutting condition, but deteriorated in light cutting condition in comparison with conventional cutter. The surface profiles of workpiece were analyzed by Fourier transformation. The distribution of cut lay left on workpiece by optimized cutter is more regular than that by the conventional cutter.

Study on Cutting Characteristics of WC-Co with Micro Cutting in SEM (SEM 내 마이크로 절삭에 의한 초경합금재의 절삭 특성에 관한 연구)

  • 허성중
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.74-81
    • /
    • 2003
  • This paper describes that the micro-cutting of WC-Co using PCD (Polycrystalline Diamond) and PcBN (Polycrystalline Cubic Boron Nitride) cutting tools are performed with SEM(Scanning Electron Microscope) direct observation method. The purpose of this study is to present reasonable cutting conditions to obtain precise finished surface and machining efficiency. Summary of the results are shown below: (1) The thrust cutting forces tend to increase more than the principal forces as the depth of cut and the cuttlllg speed are increased preferably on orthogonal microcutting. (2) The tool wear in the flank face was formed larger than that in the rake face on orthogonal micro cutting. (3) The wear appearance for PCD tools is abraded by hard WC particles of the work materials, which lead diamond grain to be detached from the bond.

An Analysis of Cutting Force in Micromachining (미소절삭에서의 절삭력 해석)

  • Kim, Dong Sik;Kahng, C.H.;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.72-80
    • /
    • 1995
  • Ultraprecision machining technology has been playing a rapidly increasing and important role in manufacturing. However, the physics of the micromachining process at very small depth of cut, which is typically 1 .mu. m or less is not well understool. Shear along the shear plane and friction at the rake face dominate in conventional machining range. But sliding along the flank face of the tool due to the elastic recovery of the workpiece material and the effects of plowing due to the large effective negative rake angle resultant from the tool edge radius may become important in micromachining range. This paper suggests an orthogonal cutting model considering the cutting edge radius and then quantifies the effect of plowing due to the large effective negative rake angle.

  • PDF

A Study on the, Tooth Profile and Strength of WILDHABER-NOVIKOV Gear for high Power Transmission (고부하 동력 전달용 WILDHABER-NOVIKOV GEAR의 치형과 강도에 대한 연구)

  • Choe, Sang-Hoon;Park, Yoong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.3
    • /
    • pp.85-94
    • /
    • 1984
  • The WILDHABER-NOVIKOV gear, one of the circular arc gears, has the large contact area between the convex and concave profiled mating teeth, moves from one end of the tooth to the other axially making a face contact. Hence it provides a large load capacity than the Involute gear and still satisfying the law of gearing. In order to analyze the gear stress, a photoelastic investigation was carried out. Photo elastic model of the WILDHABER-NOVIKOV gears were made of Araldite CT200 in this investigation. For both the many teeth gear and the few teeth gear segments, External gears of all addendum type WILDHABER-NOVIKOV gear and the involute gear were tested. Included were the models with various profile raddi at the same pressure angle 20 .deg. and module 13.5. The flank stresses and fillet stresses of these gears were observed in each case and compared with those of gears. From this investigation, the following results were obtained. A. In the case of having many teeth gear: As the profile radius is increased, the fillet stresses of the WILDHABER-NOVIKOV gear become the same or less than that of the INVOLUTE gea, and the flank stress becomes smaller than that of the INVOLUTE gear. Therefore the better design condition is satisfied with a large profile radius. B. IN the case of having a few teeth gear: As the profile radius is increased the flank stress of WILDHABER-NOVIKOV gear becomes smaller than that of the INVOLUTE gear, but the fillet stresses become larger than that of the INVOLUTE gear. Therefore the larger design condition is satisfied with small profile radius.

  • PDF

Effects of Bearing Characteristic on the Gear Load Distribution in the Slewing Reducer for Excavator (굴삭기용 선회감속기의 베어링 특성이 기어 하중 분포에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.8-14
    • /
    • 2014
  • A slewing reducer consists of two planetary gearsets which require a good load distribution over the gear tooth flank for enhanced durability. This work investigates how the bearing characteristics influence the load distribution over the gear tooth flank. A complete system model is developed to analyze a slewing reducer, including the non-linear mesh stiffness of the gears and the non-linear stiffness of bearings. The results indicate that the type, arrangement and preload of the output shaft bearings greatly influence the gear mesh misalignment, contact pattern, face load factor, gear safety factor and lifetimes of the parts.

Effects of Bearing Internal Clearance on the Load Distribution and Load Sharing in the Pitch Reducer for Wind Turbines (베어링 내부 틈새가 풍력발전기용 피치 감속기의 하중 분포와 하중 분할에 미치는 영향 분석)

  • Kim, Jeong-Kil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The pitch reducer consists of several planetary gearsets, and they should have good load distribution over gear tooth flank and load sharing among the planets to improve the durability. This work investigates how bearing internal clearances influence both the load distribution over the gear tooth flank and the planet load sharing. A whole system model is developed to analyze a pitch reducer. The model includes non-linear mesh stiffness of gears, non-linear stiffness of bearings. The results indicate that the face load factor and mesh load factor decrease, and the fatigue life of output shaft bearings increase as bearing internal clearances of output shaft decrease. Therefore, the internal clearance of output shaft bearing must be considered when designing the pitch reducer for wind turbines.