• 제목/요약/키워드: Flange Width

검색결과 118건 처리시간 0.023초

FRP-콘크리트 합성 바닥판의 최적설계에 관한 연구 (The Study of Optimal Design of FRP-Concrete Composite Deck)

  • 이현섭;조성배;박장호;신영석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.511-516
    • /
    • 2004
  • The objective of this study is to optimally design FRP-concrete members of a bridge structure. Using the GENESIS7.0 that is a commercial optimization program we performed an optimal design with design parameters that consist of height, width of FRP member, height of concrete. And we practiced an optimal design with the design variables, thickness of upper flange, bottom flange, and web. The results of these studies are summarized as follows : (1) Thickness of composite-concrete is proper at over loon (2) FRP member reaches the optimal section when the width of the FRP member is 20cm its height is 10cm and the height of the composite-concrete is 12cm.

  • PDF

저진동 차량을 위한 결합부 인자 연구 (A Study on Joint Design Factors for Low Vibration Vehicle)

  • 이재우;성영석;강민석;이상범;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.177-184
    • /
    • 2008
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structure performance is greatly affected by crossmember and joint design. While the structural characteristic of these joint vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper present the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. The result can present design guide for high-stiffness vehicle.

  • PDF

Rotation capacity of composite beam connected to RHS column, experimental test results

  • Eslami, Mohammadreza;Namba, Hisashi
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.141-159
    • /
    • 2016
  • Commonly in steel frames, steel beam and concrete slab are connected together by shear keys to work as a unit member which is called composite beam. When a composite beam is subjected to positive bending, flexural strength and stiffness of the beam can be increased due to "composite action". At the same time despite these advantages, composite action increases the strain at the beam bottom flange and it might affect beam plastic rotation capacity. This paper presents results of study on the rotation capacity of composite beam connected to Rectangular Hollow Section (RHS) column in the steel moment resisting frame buildings. Due to out-of-plane deformation of column flange, moment transfer efficiency of web connection is reduced and this results in reduction of beam plastic rotation capacity. In order to investigate the effects of width-to-thickness ratio (B/t) of RHS column on the rotation capacity of composite beam, cyclic loading tests were conducted on three full scale beam-to-column subassemblies. Detailed study on the different steel beam damages and concrete slab damages are presented. Experimental data showed the importance of this parameter of RHS column on the seismic behavior of composite beams. It is found that occurrence of severe concrete bearing crush at the face of RHS column of specimen with smaller width-to-thickness ratio resulted in considerable reduction on the rate of strain increase in the bottom flange. This behavior resulted in considerable improvement of rotation capacity of this specimen compared with composite and even bare steel beam connected to the RHS column with larger width-to-thickness ratio.

둥근 모서리를 갖는 절곡 자유돌출판의 유효폭 분석 (A Study on Effective Width of Press-Braked Steel Plates with a Free Edge)

  • 최병호;조광일;김태봉
    • 한국강구조학회 논문집
    • /
    • 제28권5호
    • /
    • pp.355-363
    • /
    • 2016
  • 본 논문은 절곡 제작된 U형 단면 거더의 상부플랜지를 구성하는 자유돌출판의 좌굴거동 특성에 논하고자 한다. 절곡된 판 부재는 둥근 모서리를 가지므로 단면의 유효폭-두께비가 불명확하고 이에 따라 공칭 압축강도를 산정하는 데 모호한 면이 있다. 냉간성형에 의해 둥근 모서리를 갖는 자유돌출판의 등가유효폭을 평가하기 위해 3차원 유한요소해석을 수행하였다. 절곡에 따른 재료특성과 기하하적 특성을 반영하였다. 본 변수 해석적 연구로부터 각진 모서리를 갖는 일반적인 자유돌출판의 좌굴강도와 비교 분석하여 등가유효폭-두께비를 추정하였다. 국내 설계기준의 공칭 좌굴강도식이 근거하고 있는 이론식과의 비교를 통해 기준공식의 적용 방안에 대해 검토하였다.

복합적층 박스거더의 유효폭 산정을 위한 기초연구 (A Fundamental Study on Effective Width Evaluation of Laminated Composite Box Girder)

  • 천경식;지효선;박원태
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.26-31
    • /
    • 2015
  • The domestic and foreign specifications presented the effective width based on flange length to width ratio only. The existing paper on the effective width grasped of the effect of span, load type and cross-section properties, but localized steel bridges. Recently, The studies are going on in progress for the application of fiber reinforced composite material in construction field. Therefore, it is required to optimum design that have a good grasp the deformation characteristic of the displacements and stresses distribution and predict variation of the effective width for serviceability loading. This research addresses the effective width of all composite material box girder bridges using the finite element method. The characteristics of the effective width of composite structures may vary according to several causes, e.g., change of fibers, aspect, etc. Parametric studies were conducted to determine the effective width on the stress elastic analysis of all composite materials box bridges, with interesting observations. The various results through numerical analysis will present an important document for construct all composite material bridges.

Shear response of lean duplex stainless steel plate girders

  • Armoosh, Salam R.;Khalim, A.R.;Mahmood, Akram Sh.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1267-1281
    • /
    • 2015
  • Carbon steel plate girders have been used on a large scale in the building industry. Nowadays, Lean Duplex Stainless Steel (LDSS) plate girders are gaining popularity as they possess greater strength and are more impervious to corrosion than those that are constructed from carbon steel. Regardless of their popularity, there is very limited information with regards to their shear behavior. In this paper, the non-linear finite element analysis was employed to investigate the shear behavior of LDSS plate girders. Parameters considered were the web thickness, the flange width, and the girders aspect ratio. The analysis revealed that although the shear behavior of the LDSS girders was no different from that of carbon steel plate girders, it had obviously been affected by the non-linearity of the material. Furthermore, the selected parameters were found to pronounce effect on the shear capacity of the LDSS girders. That is, the shear capacity increased considerably with web thickness, and increased slightly with flange width. However, it was reduced as the aspect ratio increased. Comparisons between the finite element analysis failure loads and those predicted by the current European Code of Practice revealed that the latter underestimated the shear strength of the LDSS plate girders.

Shear lag effect of varied sectional cantilever box girder with multiple cells

  • Guo, Zengwei;Liu, Xinliang;Li, Longjing
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.295-310
    • /
    • 2022
  • This paper proposes a modified bar simulation method for analyzing the shear lag effect of variable sectional box girder with multiple cells. This theoretical method formulates the equivalent area of stiffening bars and the allocation proportion of shear flows in webs, and re-derives the governing differential equations of bar simulation method. The feasibility of the proposed method is verified by the model test and finite element (FE) analysis of a simply supported multi-cell box girder with constant depth. Subsequently, parametric analysis is conducted to explore the mechanism of shear lag effect of varied sectional cantilever box girder with multiple cells. Results show that the shear lag behavior of variable box-section cantilever box girder is weaker than that of box girder with constant section. It is recommended to make the gradient of shear flow in the web with respect to span length vary as smoothly as possible for eliminating the shear lag effect of box girder. An effective countermeasure for diminishing shear lag effect is to increase the number of box chambers or change the variation manner of bridge depth. The shear lag effect of varied sectional cantilever box girder will get more server when the length of central flanges is shorter than 0.26 or longer than 0.36 times of total width of top flange, as well as the cantilever length exceeds 0.29 times of total length of box's flange. Therefore, the distance between central webs can adjust the shear lag effect of box girder. Especially, the width ratio of cantilever plate with respect to total length of top flange is proposed to be no more 1/3.

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.

고강도 콘크리트를 사용한 T형 벽체의 구조성능 (Performance of High-Strength Concrete T-Shaped Structural Wall)

  • 강병국;하상수;이용택;이리형;천영수;윤영호;양지수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.727-732
    • /
    • 2000
  • Four 1/2-scale wall specimens with flange are tested. The purpose of this study is to investigate experimentally structural behavior of flanged walls in wall slab system apartment buildings considering effective width of flange wall. Main variables are the length of web wall and concrete strength. Cyclic lateral loads are applied at the top of the walls. A constant axial load of approximately $0.1f_{ck}\cdotA_g$ is maintained during the testing. Test result shows that the capacity of the wall was governed by aspect ratios rather than concrete strengths and that initial stiffness and strength of specimens is increased with increasing the stiffness of web wall.

  • PDF

유한요소해석 기법을 화용한 일축대칭 변단면 I형보의 좌굴강도 특성 고찰 (A Study on Lateral Torsional Buckling Strength of Nonprismatic Monosymmetric I-Beam using Finite Element Analysis)

  • 캐서린;강효기;박종섭
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2010년도 정기 학술발표대회
    • /
    • pp.83.2-83.2
    • /
    • 2010
  • Stepped I-beams having increased moment of inertia at one end(singly stepped beam) or both ends(doubly stepped beams) can often be seen in construction of bridges due to material economy and easy fabrication of the section. This paper presents the results of the parametric study of lateral torsional buckling of monosymmetric stepped I-beams with constant depth subjected to equal and opposite end moments applied at the end of the beam. Design recommendations were made based on the finite element results of the models having different combinations of monosymmetric ratio, stepped length ratio, flange thickness ratio and flange width ratio,. The proposed approximation is acceptable based on the parameters given having mostly conservative results. The proposed equation can be further used to extend the study to different loading conditions.

  • PDF