• Title/Summary/Keyword: Flammable gas

Search Result 200, Processing Time 0.067 seconds

A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure (고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구)

  • Oh, Tae-Kyun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

Multivariate Statistical Analysis and Prediction for the Flash Points of Binary Systems Using Physical Properties of Pure Substances (순수 성분의 물성 자료를 이용한 2성분계 혼합물의 인화점에 대한 다변량 통계 분석 및 예측)

  • Lee, Bom-Sock;Kim, Sung-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2007
  • The multivariate statistical analysis, using the multiple linear regression(MLR), have been applied to analyze and predict the flash points of binary systems. Prediction for the flash points of flammable substances is important for the examination of the fire and explosion hazards in the chemical process design. In this paper, the flash points are predicted by MLR based on the physical properties of pure substances and the experimental flash points data. The results of regression and prediction by MLR are compared with the values calculated by Raoult's law and Van Laar equation.

  • PDF

A Study on the Risk of Organic Solvents for Underground Area under Construction Site through a Fire Accident Case (화재사고사례를 통해서 본 건설현장 지하공간에서의 유기용제의 위험성에 대한 연구)

  • Ahn, Byung-Joon;Jung, Ki-Hyuk;Lee, Jung-Suk;Rhim, Jong-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • In the consideration of the working conditions, which have several kinds of works operating at the same time, at construction sites, it is difficult to prevent industrial accidents. There are a number of works to employ flammable materials and hot works simultaneously operated without fire protection systems. It causes a huge fire and casualties. In this research to analyze an accident case, the reasonable prevention methods are suggested throughout the property tests for the organic solvents and the analysis of the behavior for vapour cloud in the underground area of the construction site.

Measurement of Lower Flash Point for Ternary Mixture, n-Nonane+n-Decane+n-Dodecane System (삼성분계 혼합물인 n-Nonane+n-Decane+n-Dodecane 계의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.31-36
    • /
    • 2016
  • The flash point is one of the most important indicators of the flammability of liquid solutions. The flash point is the lowest temperature at which there is enough concentration of flammable vapor to form an ignitable mixture with air. In this study the flash points of ternary liquid solutions, n-nonane+n-decane+n-dodecane system, were measured using Seta flash closed cup tester. The measured values were compared with the calculated values using Raoult's law and empirical equation. The calculated data by empirical equation described the measured values more effectively than those calculated by Raoult's law.

Prediction of Explosion Limits of Aldehydes Using Chemical Stoichiometric Coefficients and Heats of Combustion (연소열 및 화학양론계수를 이용한 알데히드류의 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • The explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. The explosion limit of aldehydes have been shown to be correlated the heat of combustion and the chemical stoichiometric coefficients. In this study, the lower explosion and upper explosion limits of aldehydes were predicted by using the heat of combustion and chemical stoichiometric coefficients. The values calculated by the proposed equations agreed with literature data above determination coefficient 0.99. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the aldehydes.

Prediction of Lower Explosion Limits of Binary Liquid Mixtures by Means of Solution Thermodynamics (용액열역학에 의한 2성분계 혼합물의 폭발하한계 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.20-25
    • /
    • 2009
  • Low explosion limits of flammable liquid mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult's law, van Laar equation and Wilson equation are shown to be applicable for the prediction of the lower explosion limits for ethylacetate+ethanol and ethanol+toluene systems. The calculated values based on Raoult's law were found to be better than those based on van Laar and Wilson equations.

  • PDF

Seismic protection of LNG tanks with reliability based optimally designed combined rubber isolator and friction damper

  • Khansefid, Ali;Maghsoudi-Barmi, Ali;Khaloo, Alireza
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.523-532
    • /
    • 2019
  • Different types of gas reservoir such as Liquid Natural Gas (LNG) are among the strategic infrastructures, and have great importance for any government or their private owners. To keep the tank and its contents safe during earthquakes especially if the contents are of hazardous or flammable materials; using seismic protection systems such as base isolator can be considered as an effective solution. However, the major deficiency of this system can be the large deformation in the isolation level which may lead to the failure of bearing system. In this paper, as a solution, the efficacy of an optimally designed combined vibration control system, the combined laminated rubber isolator and rotational friction damper, is investigated to evaluate the enhancement of an existing metal tank response under both far- and near-field earthquakes. Responses like impulsive and convective accelerations, base shear, and sloshing height are studied herein. The probabilistic framework is used to consider the uncertainties in the structural modeling, as well as record-to-record variability. Due to the high calculation cost of probabilistic methods, a simplified structural model is used. By using the Mont-Carlo simulation approach, it is revealed that this combined isolation system is a highly reliable system which provides considerable enhancement in the performance of reservoir, not only leads to the reduction of probability of catastrophic failure of the tank but also decrease the reservoir damage during the earthquake. Moreover, the relative displacement of the isolation level is controlled very well by this combined system.

Gas Explosion Hazard Analysis in Domestic (가정집에서 가스폭발 위험성 분석)

  • Jo Young-Do;Kim Ji-Yun;Kim Sang-sub
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.36-42
    • /
    • 2001
  • A leak of fuel gas in partially confined area creates a flammable atmosphere and give rise to an explosion, which is one of the most common accident in domestic. Observations from accident in domestic suggest that some explosions are caused by a quantify of fuel significantly less than lower explosion limit(LEL) amount required to fill the room, which is attributed to inhomogeneous mixing of leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the mixing degree in the area. For lighter gas, such as methane, a high concentration tends to build up in the space from ceiling of room. But heavy gas, such as propane, a high concentration tends to build up in the space from bottom of room. This paper presents a method for analysing the explosion hazard in a room with very small amount of leaked gas. Based on explosion limit concentration, the gaussian distribution model is used to estimate the minimum amount of leak which yields a specified explosion pressure. The results demonstrate that catastrophic structural damage can be achieved with a volume of fuel gas which is less than 0.5 percent of the total enclosed volume in domestic. The method will help analyzing hazard to develop new safe device as well as investigating accident.

  • PDF

Global Trends of Sciences Information on the Sour Gas (사워가스 학술정보 동향)

  • Cho, Jin Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • The sour gas is natural gas containing components such as hydrogen sulphide and carbon dioxide that form acids when mixed with water. Element sulfur precipitates from sour gas when reservoir pressure and temperature decrease. According to the International Energy Agency, about 43% of the world's natural gas reserves(2,580 tcf or 73.057 tcm), excluding North America, are sour. The sour gas is often derived from the Germanic word 'sauer or acidic' and the etymology referred to as 'sour'. Sour gas requires special handling and infrastructure because it contains significant amounts of hydrogen sulphide, making it highly corrosive, flammable and explosive, and there fore more costly and dangerous to process. So the business of sour gas is affected by two important factors: the economic value of the gas, and the methods used in its production. According to be analyzed in the academic literature to sour gas(2000~2014) by the program of 'web of science', the research activities 145 papers in sour gas.

Fire Identification based on Physical Properties of Bean Oil (대두유의 물리적 특성에 따른 화재감식)

  • Jin, Bog-Kwon;Jung, Soo-Il
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.246-251
    • /
    • 2008
  • Oil Fire easily generates fire in the pressure of the atmosphere and below the normal temperature. Because these discharge flammable gas and ignite within the combustibles limit in conditioning to be assisted air and an invariable density. But Kitchen Fire shows very specific properties of matter and energy Qualification in most cases even though the same oil fires occured. In this Paper, around these specific character that Kitchen Fire have Properties of matter or energy Qualification studied on the genetic mechanism and counter measure scheme.