• Title/Summary/Keyword: Flammable Liquid Paint Thinner

Search Result 2, Processing Time 0.017 seconds

Propagation Speed and Characteristic Analysis of Flame in Compartment Fires of Flammable Liquids (인화성 혼합유의 구획 화재에 의한 화염의 전파 속도 및 특성 해석)

  • Joe, Hi-Su;Lee, Jae-Ou;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.31-36
    • /
    • 2015
  • This study analyzed the flame characteristics when igniting 200 ml of flammable liquids containing equal parts gasoline and another flammable liquid. These mixtures were used to fill a divided space in a simulation. The length of one side of the divided space was 2,000 mm, and the length of the combustion device was 1,000 mm. The mixture with alcohol had the highest flame propagation speed (0.7 s), while the mixture with light oil showed the lowest (1.2 s). The gasoline and acetone mixture reached peak flame in 25.5 s, at the highest speed, while the mixture with light oil reached peak flame in 163.7 s at the lowest speed. The gasoline and light oil showed the longest continuous combustion time (332.7 s), while the gasoline and paint thinner showed the shortest (121.5 s). A fire inspector who is examining the scene of a fire needs to analyze both the statements of the first eyewitness and the flame characteristics collectively.

A Study on Flammability Risk of Flammable Liquid Mixture (가연성 액체 혼합물의 인화 위험성에 관한 연구)

  • Kim, Ju Suk;Koh, Jae Sun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.701-711
    • /
    • 2020
  • Purpose: In this study, the risk of flammability of a liquid mixture was experimentally confirmed because the purpose of this study was to confirm the increase or decrease of the flammability risk in a mixture of two substances (combustible+combustible) and to present the risk of the mixture. Method: Flash point test method and result processing were tested based on KS M 2010-2008, a tag sealing test method used as a flash point test method for crude oil and petroleum products. The manufacturer of the equipment used in this experiment was Japan's TANAKA. The flash point was measured with a test equipment that satisfies the test standards of KS M 2010 with equipment produced by the company, and LP gas was used as the ignition source and water as the cooling water. In addition, when measuring the flash point, the temperature of the cooling water was tested using cooling water of about 2℃. Results: First of all, in the case of flammable + combustible mixtures, there was little change in flash point if the flash point difference between the two substances was not large, and if the flash point difference between the two substances was low, the flash point tended to increase as the number of substances with high flash point increased. However, in the case of toluene and methanol, the flash point of the mixture was lower than that of the material with a lower flash point. Also, in the case of a paint thinner, it was not easy to predict the flash point of the material because it was composed of a mixture, but as a result of experimental measurement, it was measured between -24℃ and 7℃. Conclusion: The results of this study are to determine the risk of mixtures through experimental studies on flammable mixtures for the purpose of securing the effectiveness of the details of the criteria for determining dangerous goods in the existing dangerous goods safety management method and securing the reliability and reproducibility of the determination of dangerous goods Criteria have been presented, and reference data on experimental criteria for flammable liquids that are regulated in firefighting sites can be provided. In addition, if this study accumulates know-how on differences in test methods, it is expected that it can be used as a basis for research on risk assessment of dangerous goods and as a basis for research on dangerous goods determination.