• Title/Summary/Keyword: Flame-vortex Interaction

Search Result 28, Processing Time 0.025 seconds

Reactants Transport Mechanism in Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 반응물 전달기구)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1690-1696
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry are adopted in this calculation. The results show that an initially flat stagnation plane, where an axial velocity is zero, is deformed into a complex-shaped plane, and an initial stagnation point is moved far away from vortex head when the counterflow field is perturbed by the vortex. It is noted that the movement of stagnation point can alter the mechanism of reactants (fuel and oxidizer) fluxes into the flame surface, and then can alter the flame structure.

  • PDF

Evolution of Flame Shape to a Vortex Pair

  • Rhee, Chang-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.623-629
    • /
    • 2001
  • The PSC (Propagation of Surfaces under Curvature) algorithm is adapted to the simulation of a flame propagation in a premixed medium including the effect of volume expansion across the flame front due to exothermicity. The algorithm is further developed to incorporate the flame anchoring scheme. This methodology is successfully applied to numerically simulate the response of an anchored V-flame to two strong free stream vortices, in accord with experimental observations of a passage of Karman vortex street through a flame. The simulation predicts flame cusping when a strong vortex pair interacts with flame front. In other words, this algorithm handles merging and breaking of the flame front and provides an accurate calculation of the flame curvature which is needed for flame propagation computation and estimation of curvature-dependent flame speeds.

  • PDF

Flame Behaviors of Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 화염거동)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.57-63
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the flame behaviors of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. The results showed that an initially flat stagnation plane, on which an axial velocity was zero, was deformed into a complex-shaped plane, and an initial stagnation point was moved far away from a vortex head when the counterflow field was perturbed by the vortex. It was noted that the movement of stagnation point could alter the species transport mechanism to the flame surface. It was also identified that the altered species transport mechanism affected the distributions of the mixture fraction and the scalar dissipation rate.

  • PDF

An Investigation on the Formation Characteristics of a Single Vortex Interacting with Counterflow Nonpremixed Flame (대향류 비예혼합화염과 상호작용하는 단일 와동의 생성특성에 관한 연구)

  • Yoo, Byung-Hun;Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.49-56
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the formation characteristics of a single vortex interacting with $CH_4/N_2$-Air counterflow nonpremixed flame. The numerical method was based on a predictor-corrector scheme for a low Mach number flow. The detailed transport properties and a 16-step augmented reduced mechanism are adopted in this calculation. The budgets of the vorticity transport equation arc examined to reveal the mechanisms leading to the formation, evolution and dissipation of a single vortex interacting with counterflow nonpremixed flame. It is found that the stretching term, which depends on the azimuthal component of vorticity, and radial velocity, mainly generates vortieitv in non-reacting and reacting flows. The viscous and baroclinic torque term destroy the vorticity in non-reacting flow. In addition, the baroclinic torque term due to density and pressure gradient generates vorticity, while viscous and the volumetric expansion terms due to density gradient destroy vorticity in reacting flow.

  • PDF

The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect (체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구)

  • Chung, Eui-Heon;Kwon, Se-jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1669-1680
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results. Including volume expansion, the flow field is adjusted to accommodate the increased volume flow rate which crossing the flame front and the result predicts the same behavior of measured velocity field qualitatively. The effect of increasing volume expansion does not change the initial growth rate of flame area but increase the residence time. Consequently this effect increases the maximum area of flame front. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect (체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구)

  • Jeong Ui-Heon;Gwon Se-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.204-210
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength determined by the density difference between the burned and the unburned region. Volume expansion adjusts the flow field to accommodate the increased volume flow rate crossing the flame front. Test result predicted the measured velocity field qualitatively. The method was applied to study the interaction of vortex and premixed flame. Increased volume expansion did not change the initial growth rate of flame area. However, the residence time and flame surface area increased with higher expansion ratios.

  • PDF

Species Transport Mechanisnn and Flame Structure of Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 화학종 전달기구 및 화염구조)

  • Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1407-1416
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the flame structure of CH$_4$/$N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry were adopted in this computation. The results showed that an initially flat stagnation plane, on which an axial velocity was zero, was deformed into a complex-shaped plane, and an initial stagnation point was moved far away from a vortex head when the counterflow field was perturbed by the vortex. It was noted that the movement of stagnation point could alter the species transport mechanism to the flame surface. It was also identified that the altered species transport mechanism affected the distributions of the mixture fraction and the scalar dissipation rate.

Temporally developing behavior of an evolving jet diffusion flame (전개확산제트화염의 시간 발달 거동)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 1997
  • Experimental investigations on the comparison of developments between transient jets and evolving jet diffusion flames have been made in initial injection period. To achieve this experiment, an ignition technique using a residual flame as the ignition source is devised. High speed Schlieren visualizations, and measurements including jet tip penetration velocities and jet widths of the primary vortex are employed to examine the developing processes for several flow conditions. It is seen that the developing behaviors in the presence of flame are greatly different from those in transient jet, and thus the flow characteristics in the transient part are also modified. The discernible differences are shown to consist of the delay of the rollup of the primary vortex, the faster spreading after the rollup due to exothermic expansion, and the survival of only a primary vortex. The growth of primary vortex in the transient jet is properly explained through an impulsively started laminar vortex prior to the interaction. It is also found that the jet tip penetration velocity varies with elapsed time and an increase in Res gives rise to a higher tip penetration velocity.

An Investigation on Dynamic Behaviors of Single Vortex with CO2 Dilution in a CH4-Air Jet Diffusion Flame (CH4공기 제트 확산화염에서 CO2 첨가에 따른 단일 와동의 동적거동에 관한 연구)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Dae-Yup;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1209-1219
    • /
    • 2003
  • The dynamic behaviors of the single vortex interacting with $CH_4-Air$ jet diffusion flame are investigated numerically. The numerical method is based on a predict-corrector scheme for a low Mach number flow. A two-step global reaction mechanism is adopted as a combustion model. Studies are conducted in fixed initial velocities for the three cases according as where $CO_2$ is added; (1) without dilution, (2) dilution in fuel stream and (3) dilution in oxidizer stream. A single vortex is generated by an axisymmetric jet, which is made by an impulse of a cold fuel when a flame is developed entirely in a computational domain. The simulation shows that $CO_2$ dilution in fuel stream results in somewhat larger vortex radius, and greater amount of entrainment of surrounding fluid than in other cases. Thus, the dilution of $CO_2$ in fuel stream enhances the mixing in single vortex and increases the stretching of the flame surface. The budgets of the vorticity transport equation are examined to reveal the mechanism of vortex formation when $CO_2$ is added. It is found that, in the case of $CO_2$ dilution in fuel stream, the vortex destruction due to volumetric expansion and the vortex production due to baroclinic torque are more dominant than in other cases.

Simulation of Flame-Vortex Interaction in Thin Laminar Flamelet Regime (얇은 층류 화염편 영역에서 화염과 와동의 산호 작용)

  • Kang, Ji-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.47-54
    • /
    • 1999
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results by using realistic volume expansion ratio which was not reached in the previous researches. Including volume expansion, the flow predicts the same behavior of measured velocity field qualitatively. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

  • PDF