• Title/Summary/Keyword: Flame-drop

Search Result 47, Processing Time 0.018 seconds

Electrical Properties of Organic/Inorganic Hybrid Composites for Insulation Materials

  • Kim, Sang-Cheol;Ok, Jeong-Bin;Aho, Myeong-Jin;Park, Do-Hyun;Lee, Gun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • In this work, the surface of inorganic fillers were modified with some functional groups such as stearic acid, aliphatic long chain, vinylsilane and aminosilane to control the interaction between inorganic fillers and polymer matrix. Ethylene-vinyl acetate copolymers (EVA) with various amount of vinyl-acetate and copolyether-ester elastomer were used as polymer matrix. The addition of inorganic fillers increases flame retardancy, but results in steep drop of electrical and mechanical properties, which may be caused by the defects in the interface between organic/inorganic hybrid composites. The hybrid composites are found to show better mechanical properties and higher volume resistivities as inorganic fillers are well dispersed and have good adhesion with polymer matrix. Also, the most effective type of functional group coated on fillers depends on the chemical structure of polymer.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

Study of SNCR Application to Industrial Boiler for NOx Control (산업용 보일러의 질소산화물 제어를 위한 SNCR 적용 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.286-292
    • /
    • 2005
  • This study is to investigate the industrial boiler which can be significantly affected by the restriction of NOx. Note that the application of SNCR method to industrial boiler is usually blown as not feasible due to the insufficient residence time for proper mixing. The purpose of this study is to investigate the applicability of the SNCR system application to the industrial boiler, which produces 40 tons of steam per hour using heavy oil. For the industrial boiler with 3-D rectangular coordinate, the general coding are made fur various turbulence modeling such as turbulent flow, turbulent fuel combustion, thermal NO formation and destruction together with the NO reaction with reducing agents. Further, the incorporation of drop trajectory model is successfully made in 3-D rectangular coordinate with Lagrangian frame and the main swirl burner effect on the characteristics of flame is considered. As expected a short flame was created and thereby NOx is removed more efficiently by increasing the proper region of temperature for NO reduction reaction. The validation of program was made successfully by the comparison of experimental data. Based on the reliable calculation results, the SNCR method in a industrial boiler shows the possibility as one of viable NO reduction method by the use of well designed mixing air of reducing agent.

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors (다종의 동축 스월형 단일 분사기 연소 특성에 관한 실험적 연구)

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.85-94
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principal design parameters. a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

Effect of Swirl Cup Geometry on Spray Characteristics in Gas Turbine Engine (가스터빈 연소기의 스월컵 형상이 분무특성에 미치는 영향)

  • 김동준;박종훈;고현석;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.29-36
    • /
    • 2002
  • Experiments have been performed to investigate the effect of secondary venturi tip angle on flow and spray characteristics in gas turbine combustor with a swirl cup assembly. Three variations of secondary venturi tip angle are made: converging, straight and diverging angles. It is found that the variation of venturi tip angle results in the significant changes of flow and spray characteristics in gas turbine combustors, such as the size and location of recirculation zones. drop size and mass distribution affecting combustion efficiency and NOx emissions. In diverge case, central toroidal recirculation zone(CTRZ) exists near the exit, which is known to be beneficial for flame stability. But in converge case, the finest SMD distribution and uniform mass distribution are found and CTRZ is longer than other cases. Consequently, high combustion efficiency and low pollutant emission are expected in converge case.

Effects of Inert Gas Composition Variations in Biogas on the Performance of a SI Engine (바이오가스 내의 불활성 가스 성분 변화가 SI 엔진 성능에 주는 영향)

  • Lee, Sunyoup;Park, Seunghyun;Park, Cheolwoong;Kim, Changgi;Lee, Janghee;Woo, Sejong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.14-20
    • /
    • 2012
  • Biogas can be obtained from biogenic materials through an anaerobic digestion process. Since biogas has low calorific value and its composition significantly varies, appropriate combustion strategies need to be established to obtain stable combustion in engine applications. In this study, efforts have been made to investigate the effects of inert gas composition variations on engine performance and emissions. Results show that the MBT spark timing was advanced and $NO_x$ was reduced as the inert gas in the biogas rose. Moreover, $NO_x$ emission drop in $CO_2$ diluted biogas was more significant than that of $N_2$ due to higher heat capacity of $CO_2$, while THC emissions showed the opposite tendency. Thermal efficiency was increased in $N_2$ case with elevation of $N_2$ due to the decreased heat loss and PMEP. However, there is no difference in $CO_2$ case because of deteriorated flame propagation speed.

A Study on the Manual Skills of Experimental Apparatuses of Preservice Elementary School Teachers (초등 예비교사의 실험 기구 조작 능력에 대한 연구)

  • Lee, So-Ree;Choi, Hyun-Dong;Lim, Jae-Keun;Shin, Se-Young;Yang, Il-Ho
    • Journal of Science Education
    • /
    • v.35 no.1
    • /
    • pp.80-90
    • /
    • 2011
  • The purpose of this study is to investigate manual skills of experimental apparatuses of pre-service elementary school teachers by examining and analyzing the process of experiments conducted by pre-teachers. For this study, 24 pre-service elementary school teachers were selected as the subjects and 4 experimental apparatuses were chosen through analyzing science textbooks from 3rd grade to 6th grade in elementary school. The selected experimental apparatuses were alcohol burner, dropper, microscope, instruments for making a prepared specimen. In addition, a task was carefully chosen to conduct an investigation in real settings and a series of evaluation standards was developed. While 3 subjects conducted experiments in separated and independent space at the same time, 3 collaborators observed the experiment process and recorded whether the subject met the evaluation standards or not, using O, X. The study suggests that pre-service elementary school teachers' manual skills of experimental apparatuses were under far below our projections. Particularly, in case of alcohol burner, the subjects showed lower ability to properly light the burners - which is to brush through the lampwick with fire - and to adjust the height of tripods according to the flame. Also, when it comes to dropper, they were not held the way they were supposed to be. In addition, when designing prepared specimen, the subjects used their hands instead of tweezers and often skipped the process of dripping water drop and wiping water with an oilpaper. Moreover, they did not know how to use a microscope properly so there were many times that they could not focus a microscope, failing to observe the objects. Educational implications are discussed.

  • PDF