• Title/Summary/Keyword: Flame-drop

Search Result 47, Processing Time 0.194 seconds

Experimental Study on the Edge Flame Stabilization and its Structure Nearby Quenching Limits in a High Temperature Channel (고온 채널 내부 에지화염의 소염 한계 영역에서의 화염 안정화 및 구조에 관한 실험적 연구)

  • Lee, Min-Jung;Kim, Nam-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Edge flames have been interested as a basic structure that is concerned to flame stabilization and re-ignition of non-premixed flames. The edge flame consists of a lean premixed flame, a rich premixed flame, and a diffusion flame. In order to investigate fundamental structures of the edge flames at the conditions near the flammability limits, edge flames were stabilized within a heated narrow channel. Highly diluted partially premixed methane was used, and the flow rates of air and the partially premixed mixture were controlled. Various flame behaviors, including a transition between ordinary edge flames and premixed flames, were observed. Flame stabilization characteristics were examined as well. All flame stabilization conditions in this study showed a similar trend: characteristic time scales were inversely proportional to the equivalence ratio defined at the burner inlet. Finally, an interesting flame structure having a weak diffusion branch enveloped by a closed premixed branch was found near the flammability limits even in a fuel-air mixing layer. This structure was named as a "flame-drop" and the importance of this structure was first suggested.

Flame Spread Behavior near the End of Wire over Electrical-wire with Applied AC Electric Fields. (교류전기장이 인가된 전선위에서 전선 끝단 근처의 화염전파 거동)

  • Hwang, Sang Seok;Kim, Min Kuk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.249-252
    • /
    • 2012
  • Experiments have been conducted to clarify flame spread behavior over electrical wire near the end of wire with applied AC electric fields. It is seen that the flame spread behavior near the end of wire with applied AC electric fields are quite different from that in temporally linearly-increasing flame position. The flame spread behavior can be categorized into three regimes based on the relevance of flame shape and the slanted direction of spread flame to spread rate. Detailed explanations on the characteristics are made through thermal balance mechanism. Also, the effect of drop of molten PE and fuel vapor-jet in flame spread is also discussed.

  • PDF

SPRAY AND COMBUSTION CHARACTERISTICS OF HYDROCARBON FUEL INJECTED FROM PRESSURE-SWIRL NOZZLES

  • Laryea Gabriel Nii;No Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • This paper presents spray and combustion characteristics of hydrocarbon fuel injected from pressure-swirl nozzles. Three commercial nozzles with orifice diameters of 0.256, 0.308 and 0.333mm and injection pressures ranging from 0.7 to 1.3 MPa were selected f9r the experiments. Spray characteristics such as breakup length. spray angle and drop size (SMD) were analyzed using photo image analyses and Malvern Panicle Size Analyzer. The drop size was measured with and without a blower at the same measuring locations. The flame length and width were measured using photo image analyses. The temperature distribution along the axial distance and the gas emission such as CO, $CO_2\;and\;NO_x$ were studied. The breakup length decreased with an increase in injection pressure for each nozzle but increased with an increase in nozzle orifice diameter. The spray angle increased and SMD decreased with an increase in injection pressure. The flame with an increased linearly with an increase in injection pressure and in nozzle orifice diameter. The flame temperature increased with an increase in injection pressure but decreased along the axial distance. The maximum temperatures occurred closer to the burner exit and flame at axial distance of 242mm from the diffuser tip. The experimental results showed that the level of CO decreased while that of $CO_2\;and\;NO_x$ increased with an increase in injection pressure and nozzle orifice diameter.

  • PDF

Thermophoretic deposition of soot particles in laminar diffusion flame along a solid wall in microgravity (미소중력환경에서의 고체벽면근방 층류확산염내 매연입자의 열영동 부착)

  • Choi, Jae-Hyuk;Osamu, Fujita;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.19-24
    • /
    • 2007
  • The deposition behavior of soot particles in a diffusion flame along a solid wall was examined experimentally by getting rid of the effect of natural convection utilizing microgravity environment. The microgravity environment was realized by using a drop tower facility. The fuel for the flame was an ethylene ($C_2H_4$) and the surrounding oxygen concentration 35% with the surrounding air velocity of $V_a$=2.5, 5, and 10 cm/s. Laser extinction method was adopted to measure the soot volume fraction distribution between the flame and burner wall. The results show that observation of soot deposition in normal flame was difficult from buoyancy and the relative position of flame and solid surface changes with time. The soot particle distribution region moves closer to the surface of the wall as the surrounding air velocity is increased. And the experiments determined the trace of the maximum soot concentration line. It was found that the distance between soot line and flame line is around 5 mm. That is, the soot particle near the flame zone tends to move away from flame zone because of thermophoretic force and to concentrate at a certain narrow area inside of the flame, finally, to adhere the solid wall.

  • PDF

Soot Size and Concentration Measurements in a Laminar Diffusion Flame Using a Lignt Scattering/Extinction Technique (광산란 소멸법을 이용한 층류확산화염내에 매연입자의 크기 및 농도 측정)

  • 하영철;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1796-1804
    • /
    • 1992
  • Profiles of soot volume fraction, average diameter and particle number density have been measured using a light scattering and extinction technique in a coannular propane diffusion flame at atmosperic pressure. Temperature profiles were also obtained using a thermocouple technique. Measurements show that soot is first observed to form low in the flame in an annular region inside the main reaction zone. At higher locations this annular region widen until entire flame is observed to contain particles. Soot volume fraction and particle diameter profiles peak some 1mm on the fuel side of peak temperature and increase with height to oxidation region. Number density of the flame core drop steeply from formation region to growth region and relatively invariant to some height and decay out at flame tip.

OH, PAHs and Soot Ditribution in a Laminar Diffusion Flame Under Oxidizer Deficient Ambience (산화제 결핍 분위기에서의 층류 확산화염내 OH, PAHs 및 그을음 분포)

  • Shim, Sung-Hoon;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1348-1354
    • /
    • 2002
  • We investigate the flame behavior and spatial distribution of OH, PAHs and soot in a confined buoyant diffusion flame with decrease of the coflowing air flow rate. Direct photographs and Schlieren images represent that flame is Ally occupied by blue flame and becomes unstable, which is partially detached to the fuel nozzle tip in a near extinction flame under extremely reduced oxidizer condition. Laser induced fluorescence profiles clearly shows that OH is still generated in near-extinction flame, although intensity becomes weak with decreasing air flow rate. But soot scattering image cannot be seen any more in an oxidizer deficient ambience and simultaneously the PAHs are widely distributed downstream. These results are due to that a decrease of oxygen concentration in the combustion chamber leads to a temperature drop of flame, as a consequence, to a delay in soot growth and to a expanding of the PAHs, as soot precursors.

INFLUENCE OF AERIAL FIRE FIGHTING ON INTENSITY OF RADIATION FROM FIRE

  • Iwata, Yusaku;Koseki, Hiroshi;Kon, Fumio
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.269-274
    • /
    • 1997
  • A large scale fire experiment was conducted through the collaboration between the Tokyo Fire Department and the National Research Institute of Fire and Disaster (NRIFD) for the purpose of studying the effectiveness of aerial fro fighting against urban fire. Ten model houses and ten collapsed model houses were arranged in an area of about $2,000\;m^2$. Water was dropped totally fourteen times by helicopters onto the model houses. In order to know influence of water drop, radiation was measured by four radiometers and four IR (Infrared) cameras, which were set around the burning area. In this report, the influence of aerial Ore fighting on fire was discussed in terms of irradiance and IR images. Data of irradiance, flame temperature and flame area showed that influence of each water drop continued only at most a minute.

  • PDF

The Effects of Water Spray on the NOx Formation of a Counterflow Flame (물분사가 대향류 화염의 NOx 생성에 미치는 영향)

  • Jung, Sun-Wook;Min, Byoung-Hyouk;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.8-16
    • /
    • 2001
  • Various technologies for the reduction of atmospheric pollution have been developed. One of which is to inject fine-water droplets directly on the flame. This way decreases the formation of thermal NOx due to the temperature drop during evaporation of droplets. There is another effect of reducing prompt NOx, which is resulted from delay of response time and the flow of droplets. In this experiment, it has been investigated the effects of changes of water droplets size and flow rate on temperature and formations of NOx at the counterflow diffusion flame.

  • PDF

An Experimental Study on the Characteristic of Sprays and Spray Flames by Twin-Fluid Atomizer (2유체 분사노즐을 이용한 분무 및 연소특성에 관한 실험적 연구)

  • 백민수;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.548-558
    • /
    • 1995
  • An experimental investigation has been conducted to study the spray and combustion characteristics using the air-assisted twin fluid atomizer. Axial mean and fluctuating velocity components as well as drop-size distributions in non-reaction spray were measured with a nonintrusive phase doppler technique. Droplet number density distributions were also visualized using high speed CCD camera. Locations of spray and flame boundaries are obtained by direct photographic method. It is confirmed that at the fixed fuel flow rate, the increase of the atomizing air flow causes improvements on both spray and combustion characteristics under stable flame conditions. Internal group combustion modes where flame is located inside the spray boundary are observed to exist in the upstream region of higher droplet number density.

The Effect of Bluff-Body Shapes on the Drop Size and Flame Temperature (Bluff-Body형상이 연료액적크기와 화염온도에 미치는 영향)

  • Hwang, Sang-Ho;Cha, Keun-Jong;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.937-942
    • /
    • 2000
  • The characteristics of spray combustion and dropsize of spray through twin-fluid atomizer was experimentally investigated. The distribution of flame temperature have an effect on the generation of NOx. To investigate there effects, flame temperature with different spray shape was observed. The spray shape was varied by various bluff-bodys. Mean temperature were measured by thermocouple respectively, and NOx concentration was measure by NOx analyser. Distribution of droplet sizes were measured by PMAS. The result showed that the flame with wide distribution has lower temperature and lower NOx emission compared with narrow.

  • PDF