• 제목/요약/키워드: Flame surface density

검색결과 38건 처리시간 0.018초

직접수치해법을 이용한 난류 예혼합 화염전파속도 연구 (Roles of displacement speed of premixed flame embedded in isotropic turbulent decaying flow)

  • 한인석;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.177-186
    • /
    • 2006
  • Flame surface area is a critical parameter determining turbulent flame speed. Three-dimensionaldirect numerical simulations (DNS) were conducted to figure out the evolution process of flame surface area. Fully compressible Navier-Stokes equations are solved to reproduce premixed flame embedded in isotropic decaying turbulent flow. The tangential straining and curvature of propagating surface affect development of flame area. In this study, four different turbulent intensity flows and three different Le number flames are investigated to force changes in straining and curvature effects. Consistent results are obtained for the probability density functions (PDF) of strain and curvature with previous researches. It is revealed that displacement speed, which is a speed of flame surface relative to unburnt flow, controls the balance between sink and source of flame surface area.

  • PDF

직접수치해법을 이용한 난류 예혼합 화염전파속도 연구 (Roles of Displacement Speed of Premixed Flame Embedded in Isotropic Turbulent Decaying Flow)

  • 한인석;허강열
    • 한국연소학회지
    • /
    • 제12권2호
    • /
    • pp.10-19
    • /
    • 2007
  • Flame surface area is a critical parameter determining turbulent flame speed. Three-dimensional direct numerical simulations(DNS) were conducted to figure out the evolution process of flame surface area. Fully compressible Navier-Stokes equations are solved to reproduce premixed flame embedded in isotropic decaying turbulent flow. The tangential straining and curvature of propagating surface affect development of flame area. In this study, four different turbulent intensity flows and three different Le number flames are investigated to force changes in straining and curvature effects. Consistent results are obtained for the probability density functions (PDF) of strain and curvature with previous researches. It is revealed that displacement speed, which is a speed of flame surface relative to unburnt flow, controls the balance between sink and source of flame surface area.

  • PDF

A Study of the Propagation of Turbulent Premixed Flame Using the Flame Surface Density Model in a Constant Volume Combustion Chamber

  • Lee, Sangsu;Kyungwon Yun;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.564-571
    • /
    • 2002
  • Three-dimensional numerical analysis of the turbulent premixed flame propagation in a constant volume combustion chamber is performed using the KIVA-3V code (Amsden et. al. 1997) by the flame surface density (FSD) model. A simple near-wall boundary condition is eaployed to describe the interaction between turbulent premixed flame and the wall. A mean stretch factor is introduced to include the stretch and curvature effects of turbulence. The results from the FSD model are compared with the experimental results of schlieren photos and pressure measurements. It is found that the burned mass rate and flame propagation by the FSD model are in reasonable agreement with the experimental results. The FSD combustion model proved to be effective for description of turbulent premixed flames.

마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 - (Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching -)

  • 김규태;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

영역조건평균에 기초한 난류연소속도의 직접수치해법검증 (Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database)

  • 김수엽;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.62-69
    • /
    • 2004
  • Zone conditional formulations for the Reynolds average reaction progress variable are used to derive an asymptotic expression for turbulent burning velocity. New DNS runs are performed for validation in a statistically one dimensional steady state configuration. Parametric study is performed with respect to turbulent intensity, integral length scale, density ratio and laminar flame speed. Results show good agreement between DNS results and the asymptotic expression in terms of measured maximum flame surface density and estimated turbulent diffusivity in unburned gas.

  • PDF

영역조건평균에 기초한 난류연소속도의 직접수치해법검증 (Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database)

  • 김수엽;허강열
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.1-8
    • /
    • 2004
  • Zone conditional formulation for the Reynolds average reaction progress variable is used to derive an asymptotic expression for turbulent burning velocity. New DNS runs are performed for validation in a statistically one dimensional steady state configuration. Parametric study is performed with respect to turbulent intensity, integral length scale, density ratio and laminar flame speed. Results show good agreement between DNS results and the asymptotic expression in terms of measured maximum flame surface density and estimated turbulent diffusivity in unburned gas.

  • PDF

Dynamic Sub-grid Scale G-방정식 모델에 의한 평행평판간 난류의 예 혼합 연소에 관한 대 와동 모사 (Large eddy simulation of turbulent premixed flame with dynamic sub-grid scale G-equation model in turbulent channel flow)

  • 고상철;박남섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.849-854
    • /
    • 2005
  • The laminar flame concept in turbulent reacting flow is considered applicable to many practical combustion systems For turbulent premixed combustion under widely used flamelet concept, the flame surface is described as an infinitely thin propagating surface that such a Propagating front can be represented as a level contour of a continuous function G. In this study, for the Purpose of validating the LES of G-equation combustion model. LES of turbulent Premixed combustion with dynamic SGS model of G-equation in turbulent channel flow are carried out A constant density assumption is used. The Predicted flame propagating speed is goof agreement with the DNS result of G. Bruneaux et al.

밀도에 따른 지표 연료의 연소실험 분석 (A Combustion Analysis of Surface Fuel Burning Experiment According to Density Variation)

  • 김응식;김장환;김동현;박형주;김정훈
    • 한국화재소방학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2010
  • 본 연구에서는 지표화의 대표적인 연소물질인 굴참나무(Quercus Variabilis: Q.V.)와 소나무(Pinus Densiflora: P.D.) 낙엽을 이용하여 연료의 밀도 변화에 따른 열 유체속도, 연소온도, 질량감소속도, 화염높이 및 연소시간 등의 연소특성을 분석하였다. 바스켓 높이는 10cm, 지름 20, 30, 40 그리고 50cm의 원통형 바스켓에 밀도별로 각각 채운 후 표면에 점화원을 인가하여 실험을 실시하였다. 침엽수종 낙엽의 경우 밀도와 지름의 증가함에 따라 질량감소속도, 화염지속시간, 화염의 높이 그리고 연소시간은 증가한 반면, 활엽수종 낙엽의 경우 질량감소속도와 화염높이는 증가하다가 감소하였으며 화염지속시간과 연소시간은 증가하였다. 또한, 기체유속 및 온도는 화염 높이가 커질수록 증가하는 경향을 나타내었다.

정체 유동장에 떠있는 난류 예혼합 화염의 일차 모멘트 닫힘 모사 (First Moment Closure Simulation of Floating Turbulent Premixed Flames in Stagnation Flows)

  • 이은주;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.122-132
    • /
    • 2000
  • Computational fluid dynamic simulation is performed for the floating turbulent premixed flames stabilized in stagnation flows of Cho et al. [1] and Cheng and Shepherd [2]. They are both in the wrinkled flamelet regime far from the extinction limit with $u'/S^{0}_{L}$ less than unity. The turbulent flux is given in the first moment closure as a sum of the classical gradient flux due to turbulent motions and the countergradient flux due to thermal expansion. The parameter $N_{B}'s$ are greater than unity with the countergradient flux dominant over the gradient flux. The countergradient flux is assumed to be zero in $\bar{c}<0.05$. The flame surface density is modeled as a symmetric parabolic function with respect to $\bar{c}$. The product of the maximum flame surface density and the mean stretch factor is considered as a tuning constant to match the flame location. Good agreement is achieved with the measured $\tilde{w}$ and $\bar{c}$ profiles along the axis in both flames.

  • PDF

난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델 (Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer)

  • 김준홍;정석호;안국영;김종수
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF