• 제목/요약/키워드: Flame spray

검색결과 245건 처리시간 0.033초

고속분사를 이용한 소형 축열식 복사관 버너시스템의 성능평가 (Performance Estimation of Small Regenerative Radiant Tube Burner System using High Velocity Discharge)

  • 조한창;조길원;이용국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.242-247
    • /
    • 2004
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swirl flow (DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic (TSPD) as TEM were carried out. The NOx, $CO_2$, $O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

비활성 가스 제네레이터의 후방연소기 개발에 관한 연구 (A Study on the Development of After Burner in Inert Gas Generator)

  • 김호근;안국영;김한석;임인권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.909-914
    • /
    • 2001
  • After burner which is main part of inert gas generator(IGG) is studied for the development of IGG. The results of many experimental equations are applied to estimate characteristics of the spray nozzle and evaporation of spray, and selected the optimum design point of after burner. The selected design point of after burner are validated experimentally through the pilot plant of after burner. The flame stability is favorable at design point(150mm), that distance from stabilizer to nozzle. The emission of $NO_x$ and CO is lower than gas turbine combustor which was used in primary combustor.

  • PDF

STS316 용사코팅의 마모거동에 미치는 작용하중 및 미끄럼속도의 영향 (Effect of Applied Load and Sliding Speed on Wear Behavior of Thermally Sprayed STS316 Coating)

  • 이재홍;김영식
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.74-79
    • /
    • 2014
  • This article aims at investigating the effect of applied load and sliding speed on wear behavior of thermally spraryed STS316 coating. STS316 coatings were fabricated by flame spray process according to optimal parameters on steel substrates. Dry sliding wear tests were performed on STS316 coating using four different applied load as 10, 15, 20 and 25 N and four different sliding speed as 15, 30, 45 and 60 rpm. Wear behavior on worn surface was investigated using scanning electron microscope(SEM) and energy disperive X-ray spectroscopy(EDS). The dominant wear mechanism of STS316 coating under low applied load and sliding speed was oxidation on worn surface. However, under high applied load and sliding speed the principal wear mechanism was abrasion on oxidation film and damage of oxidation film.

DME 예혼합 자기착화 연소중의 디젤분무연소에 관한 연구 (The Investigation of Diesel Spray Combustion in DME HCCI Combustion)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.241-248
    • /
    • 2008
  • The purpose of the research is to investigate of diesel spray combustion for simultaneously reduction way of NOx and PM. The diesel injection were done into intermediates that are generated by very lean DME HCCI combustion using a RCM. The concentration of intermediate could not be directly measured, so we estimated it by CHEMKIN calculation. Two dimensional spontaneous luminescence images which are created by chemical species reaction at low temperature reaction (LTR) and high temperature reaction (HTR) are captured by using a framing streak camera. Also, combustion events were observed by high-speed direct photography. The ignition and combustion events were analyzed by pressure profiles and the KL values and flame temperatures were analyzed by the two-color method.

예조건화 압축성 알고리듬을 이용한 층류 분무연소장 해석 (The Application of Preconditioning in Laminar Spray Combustion Analysis)

  • 황용석;윤웅섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.128-137
    • /
    • 1998
  • In this numerical experiment, the preconditioned compressible Navier-Stokes equation is tested to analyze the laminar spray combustion. Sprayed flow field is formulated by Eulerian-Lagrangian system for the gas and liquid phases each. DSF(Deterministic Separated Flow) model was adopted for the sprays with the vortex model to describe transients of individual droplet heating. Simplified single global reaction model approximates methanol-air reaction with and without disk flame holder. The equation system is discretized by finite difference technique and time integrated by LU-SGS. Due to greatly simplified chemical reaction mechanism and the lack of experimental evidences, most of the efforts were devoted to show the applicability and robustness of preconditioned compressible flow calculation algorithm. Computation results in qualitatively reasonable combusting flow field, hence it is believed that further refinement are required to produce quantitatively accurate solutions.

  • PDF

Al/SiCp 복합재료의 마모거동에 미치는 MML의 영향 (Effect of MML on the Wear Behavior of Al/SiCp Composites)

  • 김영식;김균택
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.66-72
    • /
    • 2009
  • Al-based composites reinforced with SiC particulate were fabricated using a thermal spray process, and dry sliding wear behavior of the composites was investigated. Pre-mixed Al and SiC powders were sprayed on an A16061 substrate by flame spraying, and dry sliding wear test were performed under various sliding speed and applied load conditions against ${Al_2}{O_3}$ ball. Wear behavior of the composites was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And build-up mechanism of MML on the worn surface of the composites was examined. It was revealed that these MML was formed of debris from the contact surface of the composites and effected to wear behavior of the composites protecting the contact surface of the composites.

나노 입자가 포함된 연료 액적의 분열 특성 연구 (Breakup Characteristics of Fuel Droplet Including Nanoparticles)

  • 이재빈;신동환;이민정;김남일;이성혁
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.192-196
    • /
    • 2012
  • This paper reports on breakup characteristics of fuel droplet which includes metal nanoparticles. In order to develop a new injection system for nanoparticle-coated layers overcoming the conventional flame spray system, fundamental experiments were conducted to examine the interaction between a fuel droplet with nanoparticles and the external energy induced by the laser. In the experiments, this study used nickel nanoparticles whose size was under 100 nm to mix with kerosene as the fuel, and utilized a syringe pump and a metal needle to inject a fuel droplet. In particular, the Nd-YAG laser was adopted to give additional energy to the nanoparticles for evaporation of a fuel droplet containing nanoparticles. When the laser energy as 96 mJ was irradiated during the injection, it was observed that such an explosive evaporation occurred to break up a fuel droplet including nanoparticles, making the rapid increase in the ratio surface area to liquid volume. From this work, we suggest the possibility that the laser energy can be used for rapid evaporation of a fuel droplet.

Spray-ICP technique에 의한 $SnO_2$미분말 합성 및 박막 제조 (Synthesis of ultrafine particles and thin films of $SnO_2$ by the spray-ICP technique)

  • 김정환;박종현;김영도;신건철
    • 한국결정성장학회지
    • /
    • 제8권3호
    • /
    • pp.487-492
    • /
    • 1998
  • ICP(Inductively Coupled Plasma)를 열원으로 출발용액의 농도변화 및 $TiO_2$ 첨가로 $SnO_2$$(Sn,Ti)O_2$미분말을 합성하였으며 SnO2 박막을 제조하였다. 각각 합성된 $SnO_2$ 미분말은 모두 tetragonal의 rutile형으로서 입자들의 평균입경은 30nm로 매우 미세하였으며, 좁은 입도분포를 나타내었다. $TiO_2$를 첨가하였을 경우 $SnO_2-TiO_2$ 미분말은 고용체를 이루었으며, 첨가량이 증가함에 따라 결정성은 감소하였다. ICP tail flame으로 fused quartz 기판을 가열하여 (101)면을 주 peak로 하는 $SnO_2$ 박막을 얻었다.

  • PDF

모델연소기에서의 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF