• Title/Summary/Keyword: Flame soot

Search Result 205, Processing Time 0.02 seconds

The Measurement of Soot Particle Temperatures Using a Ratio Pyrometry (Ratio Pyrometry를 이용한 매연입자 온도 계측에 대한 고찰)

  • Nam, Youn-Woo;Lee, Won-Nam;Lee, Chun-Beom
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.124-129
    • /
    • 2004
  • The ratio pyrometry has been investigated experimentally for the measurement of soot particle temperatures in a diffusion flame. A tungsten lamp calibration system was constructed and used in order to calibrate the ratio pyrometry and two-color pyrometry using a KL-factor method. Once the ratio pyrometry is properly calibrated, temperatures measured using a ratio pyrometry were virtually identical to those obtained from a KL-factor method. The effect of soot volume fraction on temperature measurement was almost negligible, and therefore, the ratio pyrometry could provide the useful temperature information of sooting flames. The potential application of a ratio pyrometry to a 2-D temperature measurement without sacrificing the accuracy was demonstrated.

  • PDF

Effect of partial sintering of silicate soots on refractive index of the silcate glass films deposited by FHD Process (FHD 공정으로 Si wafer에 증착된 silicate soot의 부분 소결 처리가 굴절률 변화에 미치는 영향)

  • 유성우;정우영;백운출;한원택
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.46-47
    • /
    • 2002
  • Flame Hydrolysis Deposition (FHD) 공정은 SiC1$_4$, GeCl$_4$, POC1$_3$, BCl$_3$ 등의 원료를 사용하여 Si wafer 및 유리기판 위에 silicate soot를 증착하는 방법이며, 증착된 soot는 고온에서 소결과정을 거쳐 B$_2$O$_3$-P$_2$O$_{5}$ -GeO$_2$-SiO$_2$(BPGS)계 유리막으로 형성된다. 유리막의 굴절률은 SiC1$_4$, GeCl$_4$, POC1$_3$, BCl$_3$ 등의 원료 유량을 조절하여 변화가능하며 이를 이용하여 광도파로를 제작할 수 있다 특히 광통신에 사용할 수 있는 광증폭기 등의 능동형 광소자 제작을 위해서는 FHD공정을 통해 형성된 soot에 Er$^{3+}$ 등의 희토류 원소를 첨가하여야 한다. (중략)

  • PDF

Performance Estimation of Small Regenerative Radiant Tube Burner System using High Velocity Discharge (고속분사를 이용한 소형 축열식 복사관 버너시스템의 성능평가)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.242-247
    • /
    • 2004
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swirl flow (DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic (TSPD) as TEM were carried out. The NOx, $CO_2$, $O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

A Study on the Characteristics of Soot Formation and Oxidation in Free Fuel Droplet Array

  • Lee, Myung-Jun;Kim, Jong-Youl;Yeom, Jeong-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.851-860
    • /
    • 2002
  • In this study, it was attempted to obtain the fundamental data for the formation and oxidation of soot from a diesel engine. Combustion of spray injected into a cylinder is complex phenomenon having physical and chemical processes, and these processes affect each other. There are many factors in the mechanism of the formation and oxidization of soot and it is necessary to observe spray combustion microscopically. In order to observe with that view, free fuel droplet array was used as an experimental object and the droplet array was injected into an atmospheric combustion chamber with high temperature. Ambient temperature of the combustion chamber, interdroplet spacing, and droplet diameter were selected as parameters, which affect the formation and oxidation of soot. In this study, it was found that the parameters also affect ignition delay of droplet. The ambient temperature especially affected the ignition delay of droplet as well as the flame temperature after self-ignition. As the interdroplet spacing that means the local equivalence ratio in a combustion chamber was narrow, formation of soot was increased. As diameter of droplet was large, surface area of the droplet was also broad, and hence evaporation of the droplet was more active than that of a droplet with relative small diameter.

The Calibration Method of Time Resolved Laser Induced Incandescence Using Carbon Black Particles for the Soot Measurement at Exhaust Tail Pipe in Engine (엔진 배기단 적용을 위한 Time Resolved Laser Induced Icandescence (TIRE-LII) 신호의 보정 : 카본 입자 이용)

  • Oh Kwang Chul;Kim Deok Jin;Lee Chun Hwan;Lee Chun Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1335-1343
    • /
    • 2005
  • The calibration technique of Time Resolved Laser Induced Incandescence was investigated both experimentally and numerically by using standard-sized carbon black particles for the instantaneous soot measurement at exhaust tail pipe in engine. The carbon black particles (19nm, 25nm, 45nm and 58nm) used in this study are similar, though not identical, to soot particle generated from flame not only in morphology but also in micro-structure. The amount of soot loading in flow was controled by a diluted gas (nitrogen) and was measured by the gravimetric method at exhaust pipe in calibrator. The successful calibrations of primary particle size and soot mass fraction were carried out at the range from 19nm to 58nm and from $0.25mg/m^3$ to $37mg/m^3$ respectively. And based on these results the numerical simulation of LII signal was tuned and the effect of an exhaust temperature variation on the decay rate of LII signal was corrected.

Soot Formation Characteristics of Concentric Diffusion Flames with Mixture Fuels (이중동축류 화염을 이용한 혼합연료의 매연생성 특성에 관한 연구)

  • Lee, Won-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.123-128
    • /
    • 2002
  • The synergistic effect of ethylene/propane and ethylene/methane mixtures on soot formation is studied experimentally with a concentric co-flow burner. The integrated soot volume fractions, laser light scattering signal and PAH concentrations are measured for different fuel supply configurations. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the composition of mixture but also by the way of mixing. Comparing to the homogeneously mixed ethylene/propane case, the increase of soot formation is observed when propane is supplied through the inner nozzle, while the decrease is observed when propane is supplied through the outer nozzle. However, the measured PAH concentration distributions are inconsistent with the current view of the synergistic effect of ethylene./propane mixture on soot formation. Virtually no synergistic effect is observed in ethylene-methane flames regardless of the fuel supply configuration, which suggests the important role of $C_3$ species produced during the propane pyrolysis process for the synergistic effect.

  • PDF

Visualization of Combustion by Using Laser Diagnostic Techniques (레이저 진단기법을 이용한 연소 가시화 기술)

  • Chung S. H.;Won S. H.
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.52-56
    • /
    • 2004
  • Several visualization techniques of laser diagnostics are presented for combustion phenomena, including Mie scattering for flow, Rayleigh and Raman scattering spectroscopy for major species, laser-induced fluorescence for minor species, and laser-induced incandescence for soot. These techniques have been applied to understand the various combustion phenomena more clearly, including buoyancy-dominant flow system, diffusion flam oscillation, laminar and turbulent lifted flames, flame propagation along a vortex ring, and soot zone characteristics. The usefulness of laser diagnostics on a better understanding of physical mechanism is demonstrated.

  • PDF

The Role of Large Scale Mixing and Radiation in the Scaling of NOx Emissions From Unconfined Flames

  • Newbold, Greg J.R.;Nathan, Graham J.;Nobes, David S.;Turns, Stephen R.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • Measurements of global emissions, flame radiation and flame dimensions are presented for unconfined turbulent-jet and precessing-jet diffusion flames. Precessing jet flames are characterised by increases in global flame radiation and global flame residence time for methane and propane fuels, however a strong dependency of the NOx emission indices on the fuel type exists. The fuel type dependence is considered to be because soot radiation is more effective than gas-radiation at reducing global flame temperatures relative to adiabatic flame temperatures and reducing the NO production rate.

  • PDF

Analysis of Soot Particle Morphology Using Rayleigh Debye Gans Scattering Theory (RDG 산란 이론을 이용한 그을음 탄소 입자의 형상 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.641-646
    • /
    • 2016
  • Soot particles generated by fossil fuel combustion normally have fractal morphology with aggregates consisting of small spherical particles. Thus, Rayleigh or Mie elastic light scattering theory is not feasible for determining the fractal properties of soot aggregates. This paper describes a detailed process for applying Rayleigh-Debye Gans (RDG) scattering theory to effectively extract the morphological properties of any nano-scale particles. The fractal geometry of soot aggregates produced from an isooctane diffusion flame was observed using ex situ transmission electron microscopy (TEM) after thermophoretic sampling. RDG scattering theory was then used to analyze their fractal morphology, and various properties were calculated, such as the diameter of individual soot particles, number density, and volume fraction. The results show indiscernible changes during the soot growth process, but a distinct decreasing trend was observed in the soot oxidation process. The fractal dimension of the soot aggregates was determined to be around 1.82, which is in good agreement with that produced for other types of fuel. Thus, it can be concluded that the value of the fractal dimension is independent of the fuel type.

Measurements of Soot Volume Fraction Using Laser Induced Incandescence (레이저 유도 백열법을 이용한 화염 내부 매연 농도 측정)

  • Lee, Seung;Lee, Sang-Hup;Lee, Byeong-Jun;Hahn, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.725-732
    • /
    • 2000
  • Laser induced incandescence (LII) method is frequently used to measure soot volume fraction in flames. In this study, experiments were performed to measure soot volume fraction in coaxial diffusion flame using LII method and calibrated with laser scattering/extinction method. The effects of laser intensity (>$1{\times}10^8W/cm^2$), laser wavelength (532nm, 1064nm) and detection wavelength (400nm, 600nm) on the LII signal were investigated. On the range of $4{\times}10^8{\sim}8{\times}10^8W/cm^2$ there were no effects of laser intensity on LII signal. Except these ranges, LII signal was increased with laser intensity. For the long gate width, the LII signals of the higher laser intensity (>${\vartheta}(GW/cm^2)$) cases had better correlation with soot volume fraction which were measured by laser extinction method compared with lower laser intensity cases. The errors of 2-dimensional cases at the calibration height were approximately 50% regardless of laser wavelength.