• 제목/요약/키워드: Flame response characteristics

검색결과 35건 처리시간 0.025초

주택 실물화재실험에 의한 화재감지기 응답특성에 관한 연구 (A Study on the Response Characteristics of Fire Detector by Full-scale Experiment of Fire Phenomena in the Row House)

  • 사공성호;김시국;이춘하;정종진
    • 한국화재소방학회논문지
    • /
    • 제23권3호
    • /
    • pp.67-72
    • /
    • 2009
  • 본 논문은 주택 실물화재실험에 의한 화재감지기 응답특성에 관한 연구로서 철거가 예정된 연립주택을 화재실험대상으로 선정하여 현재 가장 많이 사용되고 있는 감지기 종류인 열감지기(차동식, 정온식, 아날로그식)와 연기감지기(광전식, 아날로그식, 단독경보형)를 주택내부에 설치여 화재감지기의 응답특성을 분석하고, 추가적으로 건물내부로의 화염전파 및 화재확대를 관찰하기 위해 열전대를 설치하여 온도변화를 측정하였다. 실험결과 주택에서 효과적인 화재감지시스템을 구축하기 위해서는 연기감지기가 열감지기보다 주택용 감지기로 적합한 것으로 나타났다.

인공신경망 PID를 이용한 무인항공기 터보제트 엔진 제어 (Turbojet Engine Control of UAV using Artificial Neural Network PID)

  • 김대기;홍교영;안동만;홍승범;지민석
    • 한국항행학회논문지
    • /
    • 제18권2호
    • /
    • pp.107-113
    • /
    • 2014
  • 본 논문에서는 무인항공기용 소형 터보제트엔진에 대해 압축기 서지현상 및 화염소실을 방지하면서 과도응답 특성을 개선하는 제어기를 설계하였다. 인공신경망과 PID 제어 알고리즘을 적용하는 터보제트엔진 제어기를 설계하고 인공신경망 역전파 알고리즘을 사용하였다. 터보제트 엔진의 가 감속 시 서지현상과 flame-out 현상을 방지하기 위해 연료 유량 제어 입력을 인공신경망 PID 제어기로 생성한다. 생성된 연료 유량 제어 입력은 신속하고 안전하게 원하는 속도로 수렴할 수 있도록 제어기를 설계한다. MATLAB을 이용한 시뮬레이션을 통해 이득 값에 따른 응답특성 비교 분석 및 신속하고 안전하게 원하는 속도로 수렴하는 제어성능을 확인하였다.

고이득 관측기가 적용된 터보제트엔진의 인공신경망 PID 제어기 설계 (Turbojet Engine Control Using Artificial Neural Network PID Controller With High Gain Observer)

  • 김대기;지민석
    • 한국항공운항학회지
    • /
    • 제22권1호
    • /
    • pp.1-6
    • /
    • 2014
  • In this paper, controller propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Levenberg-Marquartdt Error Back Propagation Algorithm. Artificial Neural Network inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbojet engine for UAV. High Gain Observer is used to estimate to compressor rotation speed of turbojet engine. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

흡기포트 분사방식의 가솔린 엔진에서 급가속시 연료 거동에 관한 연구 (A Study on Fuel Transport Characteristics in a Port Fuel Injected Sl Engine during Transient Condition)

  • 황승환;조용석;이종화
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, the fuel transport characteristics during transient condition was studied by using a Fast Response Flame Ionization Detector(FRFID). The quantitative measurement method for the inducted fuel mass into cylinder is studied. The inducted fuel mass into the cylinder was estimated by using calculated air-fuel ratio by hydrocarbon concentration of cylinder and air flow model. In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient $\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-off To reduce an air/fuel ratio fluctuation during rapid throttle opening, the appropriate fuel injection rate was obtain from the wall wetting model with empirical coefficients. Result of air/fuel ratio control, air/fuel excursion was reduced.

적외선 열화상법 및 FE-SEM을 활용한 마그네슘 연소특성에 관한 실험적 연구 (Experimental Study on the Combustion Characteristics of Magnesium using Infrared Thermography and FE-SEM)

  • 이준식;남기훈
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.927-934
    • /
    • 2020
  • Magnesium powder has been widely used in various industries because it is light weight and extremely high mechanical strength including aeronautics and chemicals. However, magnesium, as a combustible metal, poses serious safety issues such as fires and explosions if it is not managed properly. Especially, magnesium's max adiabatic flame temperature is 3,340℃ and it is impossible to extinguish it by using water, CO2 and Halonagents. The aim of this study is to identify the combustion characteristics of magnesium powder. We carried out a combustion experiment, using 1 kg of magnesium (purity > 99 %, particle < 150 ㎛). The features of the magnesium burning process were scrutinized using infrared thermal image analysis. Also, a field-emission scanning electron microscope (FE-SEM) were used employed to analyze particulate composites and properties. It concludes the significant tendency of magnesium fire and light, combustion carbide's particle characteristics. This study contributes to make better prevention and response manners to magnesium fires, as well as fire investigation measures.

가솔린 기관의 시동조건에 따른 HC의 배출특성 (Characteristics of HC Emissions by Starting Conditions in an SI Engine)

  • 김성수
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.1-9
    • /
    • 2004
  • During the SI engine starting up, starting conditions directly contribute to the unburned hydrocarbon emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame ionization Detector (FRFID). The result showed that HC emissions, which were emitted at the cold coolant and catalyst temperature, were generated much higher than those of hot coolant and catalyst temperatures. In additions, fuel injection skips reduced highly HC emissions. It is convinced that optimized fuel injection skip method according to coolant and catalyst temperatures could be applied to reduce HC emissions during the SI engine starts.

공기다단 석탄버너에서 연소공기 유동조건에 따른 NOx 배출특성에 관한 연구 (A study on the NOx emission characteristics with combustion air flow conditions in air-staged coal burner)

  • 김혁제;송시홍;김상현;이익형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.379-384
    • /
    • 2003
  • Coal-burning utilities are facing a major NOx control compliance challenge due to the heavy emission regulation. In response to this challenge, some applicative technologies to effectively reduce NOx are developed and applied in the pulverized coal power plants. One of these is low NOx burner(LNB) equipped with multi-staged air register. In this study, NOx emission rate and flame shapes are investigated with secondary and tertiary air flow conditions in air staged coal burner, and the optimal windows of flow conditions to minimize NOx emission rate are found out. The test conditions treated in this study are the flow rate, swirl direction and intensity and throat injection velocity of secondary and tertiary air.

  • PDF

가솔린기관의 시동시 연료분사기법에 의한 HC 배출저감 연구 (A Study on the Reduction of HC Emissions by Fuel Injection Methods during the SI Engine Start)

  • 김성수
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.257-262
    • /
    • 2003
  • Engine-out HC emissions were investigated during engine start. The tests were conducted on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine at different coolant temperatures and fuel injection-skip methods; no skip, 1 cycle-skip and 3 cycle-skip. To understand the characteristics of engine-out HC emissions, HC concentration was measured at a exhaust port using a Fast Response Flame Ionization Detector (FRFID). The result show that HC emissions were emitted at the cold coolant temperature much higher than those of the hot coolant. In additions, the fuel injection skip highly reduced engine-out HC emissions. It is convinced that optimized fuel injection skips according to coolant temperatures could be applied to reduce HC emissions during SI engine start.

  • PDF

Investigation of Self-Excited Combustion Instabilities in Two Different Combustion Systems

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1246-1257
    • /
    • 2004
  • The objective of this paper is to characterize dynamic pressure traces measured at self-excited combustion instabilities occurring in two combustion systems of different hardware. One system is a model lean premixed gas turbine combustor and the other a fullscale bipropellant liquid rocket thrust chamber. It is commonly observed in both systems that low frequency waves at around 300㎐ are first excited at the onset of combustion instabilities and after a short duration, the instability mode becomes coupled to the resonant acoustic modes of the combustion chamber, the first longitudinal mode for the lean premixed combustor and the first tangential mode for the rocket thrust chamber. Low frequency waves seem to get excited at first since flame shows the higher heat release response on the lower frequency perturbations with the smaller phase differences between heat release and pressure fluctuations. Nonlinear time series analysis of pressure traces reveals that even stable combustion might have chaotic behavior with the positive maximum Lyapunov exponent. Also, pressure fluctuations under combustion instabilities reach a limit cycle or quasi-periodic oscillations at the very similar run conditions, which manifest that a self-excited high frequency instability has strong nonlinear characteristics.

차동식 열감지기 설치기준 비교분석에 관한 연구 (Differential temperature fire detector analysis of comparative study based on sensor installation)

  • 황동환;양광모;강경식
    • 대한안전경영과학회지
    • /
    • 제16권4호
    • /
    • pp.379-389
    • /
    • 2014
  • Fire detectors are designed to minimize loss of life from a fire alarm system as an alarm to help evacuate more quickly until the completion of the evacuation alarm should be continued. the purpose of such alarms in order to achieve the characteristic fire heat release rate reaches a certain level, or when a certain time has elapsed, when the heat detector is to be alarms to answer. Requires a quick response, it is desirable to install the sensor as much as possible, but taking into account the cost of installation problems by engineering approach to minimize the quantity and rapidity of detection capability should be increased. In order to increase the rapidity of fire detectors in a room according to the height of the sensing period is to be maintained the optimum distance of the fire detector detects characteristics should be considered. Differential spot-type heat detectors installed domestic basis, depending on the type of sensor that can detect one sensor area is limited and less than 4m ceiling height regulations and simply double the number in excess of 4m and intended to be installed.