• 제목/요약/키워드: Flame residence time

검색결과 77건 처리시간 0.232초

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • 제4권2호
    • /
    • pp.51-62
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Analysis of NO Formation in Nonpremixed Hydrogen-Air Flames Considering Turbulence-Chemistry Interaction (난류연소 모델링을 이용한 수소-공기 비예혼합 화염의 NOx 생성 분석)

  • Park, Y.H.;Moon, H.J.;Kim, S.Y.;Yoon, Y.;Jeong, I.S.
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.71-79
    • /
    • 1999
  • Numerical analysis on the characteristics of nitrogen oxides (NOx) formation in turbulent nonpremixed hydrogen-air flames was carried out. Lagrange IEM model and Assumed PDF model were applied to consider turbulence-chemistry interaction known to affect the production of NOx. Partial equilibrium assumption was used to predict nonequilibrium effect to which one-half power dependence between EINOx normalized by flame residence time and global strain rate is attributed. As a result. such one-half power dependence could be reproduced only by reaction model including $HO_{2}$and $H_{2}O_{2}$, which means its dependence on Damkohler number; nonequilibrium effect. This dependence was shown better in the region of higher global strain. Besides, the improvement of turbulence model is required to predict mean flow properties quantitatively in the radial direction.

  • PDF

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.93-104
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique

  • Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2068-2076
    • /
    • 2005
  • The influence of oxygen concentration and CO$_{2}$ as diluent in oxidizer side on soot characteristics was studied by Laser Induced Incandescence, Time Resolved LII and Transmission Electron Microscopy photography in non-premixed co flowing flames. Through the comparison of TEM photographs and the decay rate of LII signal, suitable two delay times of TIRE-LII method and signal sensitivity ($\Delta$S$_{TIRE-LII/) were determined. The effects of O$_{2}$ and CO$_{2}$ as diluent in oxidizer side on soot formation are investigated with these calibrated techniques. The O$_{2}$+CO$_{2}$, N$_{2}$, and [Ar+CO$_{2}$] mixture in co-flow were used to isolate CO2 effects systematically. The number concentration of primary particle and soot volume fraction abruptly decrease by the addition of CO$_{2}$ to the co-flow. This suppression is resulted from the short residence time in inception region because of the late nucleation and the decrease of surface growth distance by the low flame temperature due to the higher thermal capacity and the chemical change of CO$_{2}$ including thermal dissociation. As the oxygen concentration increases, the number concentration of soot particles at the inception region increases and thus this increase of nucleation enhances the growth of soot particle.

A Study on Combustion Test of Kitchen Interior Materials (주방 인테리어 재료의 연소시험에 관한 연구)

  • Sung, Jae-Up;Kim, Sa-Ick
    • Journal of the Korea Furniture Society
    • /
    • 제23권3호
    • /
    • pp.261-270
    • /
    • 2012
  • Nowadays, kitchen are not for the housewives who were independent themselves in the past but for the functional spaces. Kitchen spaces are not only the main function in the residence but also changing spaces which provide the mutual understanding communication between the family members. Although the primary function of the kitchen is food preparation, it is commonly a gathering spot for family and friends, especially if it includes an informal eating area. With so much time spent in the kitchen, and can easily become tired do the decorating scheme. But, for fear of high remodeling costs, it is often unchanged for many years. Surprisingly, there are many changes that can de made to the decorating scheme of a kitchen without either the expense or the inconvenience of remodeling. Between materials on the market, materials for kitchen interior were chosen for this study. Following results came from the materials after combustion. Among boards, MDF showed the highest score in these four categories; residual inflame time, residual glow time, carbonization length, carbonization area. Also, among finishing materials (interior materials), MDF + Poly Coating showed the highest score in those categories. Therefore, it seemed that interior materials need flame retardancy.

  • PDF

2-Parameter High Frequency Combustion Instability Model (2-파라메타 모델에 의한 고주파 연소불안정 해석)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제1권2호
    • /
    • pp.74-83
    • /
    • 1997
  • The definition of burning admittance and conventional n-$\tau$ stability rating technique are combined to investigate the high frequency combustion instabilities inside the cylindrical combustion chamber. Perturbed flow variables are written as the sum of fluctuating and time-averaged mean quantities on the assumption that the terms of the order higher than unity are sufficiently small, hence linearized governing equations could be formulated. Chamber admittances up and downstream of the flame front calculated with appropriate boundary conditions result in the burning admittance and corresponding n-$\tau$ neutral stability curve. Configurational and operational design factors are tested to detect the unstable wave-induced LOX-RP1 combustion instabilities. Operational design factors, e.g. pressure or O/F ratio, appear less influential to drive high frequency instability while the location of the flame front and configurational factors enhance or deteriorate the stabilities strongly. Conclusively, LOX-RP1 combustion inside the cylindrical combustion chamber is apt to be unstable against long residence time and shortened chamber length.

  • PDF

An Experimental Study on Low Nox Combustor Performance at High Pressure and Temperature for 20kW Class Microturbines (20kW급 마이크로터빈용 저공해 연소기의 고압고온 성능실험 연구)

  • Yoon, JeongJung;Oh, Jongsik;Lee, Heonseok
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.183-190
    • /
    • 2002
  • In order to reduce NOx emissions in the 20kw class microturbines under development, the low NOx characteristics, as being an application to the lean premixed combustion technology, have been investigated. The study has been conducted at the conditions of high temperature and pressure. Air from a compressor with the temperature of 500K to 650K and the pressure of 0.3bar gauge to 0.7bar gauge, was supplied to the combustor through an air preheat-treatment. Sampling exhaust gases were measured at the immediate exit of the combustor. for the effect of temperature on NO and CO emissions. though NOx was increased, CO was decreased with increasing inlet air temperature. With increasing inlet air pressure, NOx and CO were increased also. NOx was decreased, but CO was increased with increasing inlet air mass flow rate. The test has been performed on the equivalent ratios of 0.10 to 0.25 in a lean region. NOx was increased with increasing equivalent ratios, but CO was decreased as an influence of flame temperature. In the very lean region of the equivalent ratio below 0.12, CO was increased suddenly, due to instability. As the results of this study, NOx and CO are found to be reduced to the similar level at the same time when operated at optimal conditions.

  • PDF

The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame (에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성)

  • Oh, Kwang-Chul;Lee, Uen-Do;Shin, Hyun-Dong;Lee, Eui-Ju
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1172-1177
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the change of soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth region). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

The Performance Evaluation of a Gas Turbine Combustor (가스터빈 연소기의 성능평가)

  • Ahn, Kook-Young;Kim, Han-Seok;Ahn, Jin-Hyuk;Pae, Hyoung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제24권10호
    • /
    • pp.1294-1299
    • /
    • 2000
  • The combustion characteristics have been investigated to develop the 50 kW-class gas turbine combustor. The combustor design program was developed and applied to design this combustor. The combustion air which has the temperature of 45, 200, $300^{\circ}C$ were supplied to combustor for elucidating the effect of inlet air temperature on CO, NOx emissions and flame temperature. The exit temperature and NO were increased and CO was decreased with increasing inlet air temperature. Also, the effect of equivalence ratio was considered to verify the combustor performance. The emissions of CO and NO with inlet air temperature can be analyzed qualitatively by measuring the temperature inside the combustor. The combustion performance with fuel schedule was evaluated to get the informations of the starting and part loading process of gas turbine. The combustion was stable above the equivalence ratio of 0.18. The pattern factor which is the important parameter of combustor performance was satisfied with the design criterion. Consequently the combustor was proved to meet the performance goal required for the target gas turbine system.

Deposition of Polydisperse Particles in a Falkner-Skan Wedge Flow (포크너-스캔 경계층유동에서의 다분산 입자부착에 대한 연구)

  • 조장호;황정호;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제19권9호
    • /
    • pp.2342-2352
    • /
    • 1995
  • Deposition of flame-synthesized silica particles onto a target is utilized in optical fiber preform fabrication processes. The particles are convected and deposited onto the target. Falkner-Skan wedge flow was chosen as the particle laden flow. Typically the particles are polydisperse in size and follow a lognormal size distribution. Brownian diffusion, thermophoresis, and coagulation of the particles were considered and effects of these phenomena on particle deposition were studied. A moment model was developed in order to predict the particle number density and the particle size distribution simultaneously. Particle deposition with various wedge configurations was examined for conditions selected for a typical VAD process. When coagulation was considered, mean particle size and its standard deviation increased and particle number density decreased, compared to the case without coagulation. These results proved the fact that coagulation effect expands particle size distribution. The results were discussed with characteristics of thermal and diffusion boundary layers. As the boundary layers grow in thickness, overall temperature and concentration gradients decrease, resulting in decrease of deposition rate and increase of particle residence time in the flow and thus coagulation effect.