• Title/Summary/Keyword: Flame propagation

Search Result 363, Processing Time 0.023 seconds

Time and distance of tulip-inversion in various shaped tube (다양한 형상의 관내에서 화염전파시 튤립화염으로 전환되는 시간과 거리)

  • Jung, Sang-Hun;Lee, Uen-Do;Kim, Nam-Il;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.140-146
    • /
    • 2002
  • The tulip-inversion of flames in half-open tubes was investigated experimentally. Experiments was carried out in tubes with various shapes. The image of a flame propagation were pictured by HICCD(High speed intensified CCD) and the dynamic pressure of tubes was measured by a piezo pressure sensor. By analyzing the images of the flame propagation, we found the time and the distance for the occurrence of tulip-inversion. Regardless of the shapes of tubes, time of tulip-inversion are similar and inversely proportional to the burning velocity. But distances have different tendency. In a straight tube, the distance of tulip-inversion increases when the burning velocity increases. But in a converging tube, the distance of tulip-inversion decreases when a burning velocity increases. And the distance of tulip-inversion in a converging tube is much smaller than the distance of tulip-inversion in a straight tube. These results are caused by the deceleration of a flame when the diameter of a hole in open-side of a tube is small. The deceleration causes little effect on the time of tulip-inversion.

  • PDF

Fundamental study on combustion characteristics of methanol fuel in a constant volume chamber (정적연소기를 사용한 메탄올의 연소특성에 관한 연구)

  • 이태원;이중순;정성식;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.389-396
    • /
    • 1994
  • It is very important to clarify the ignition and flame propagation processes of methanol fuel in the Spark-ignition engine. High speed Schlieren photography and pressure trace analyses were used to study on combustion characteristics of methanol fuel in a constant volume chamber. Methanol-air mixtures equivalence rations from lean limit to 1.4 were ignited at initial pressure (0.1, 0.3, 0.5 MPa), temperature (313 343, 373 K) and ignition energy (40, 180 mJ). As the result of this study, we verified the characteristics such as ignition delay, effective thermal efficiency, flame propagation velocity, lean limit, ignitability and combustion duration. Obatained results are as follows. (1) The time to 10% reach of maximum pressure was 40-50% of the total combustion duration for this experimental condition hardly affected by equivalence ratio. (2) The Effective thermal efficiency, as calculated from maximum pressure was the highest when the mixture was slightly lean $({\phi} 0.8-0.9)$ and maximum pressure was the highest when the mixiture was slightly rich $({\phi} 1.2-1.2).$

Simulation of flame propagation in suspension of coal particles (석탄입자가 존재하는 공기중에서의 화염전파에 관한 모사)

  • 윤길원;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.36-43
    • /
    • 1988
  • A two phase model for the simulation of flame propagation has been developed and applied to a mixture of coal air. The effects associated with changes in the initial coal partial equivalence ratio and the initial diameter of particles on the structure of laminar flame propagation have been studied qualitatively and quantitatively. Especially the flame structure, the burning velocity, and the thermal behavior were evaluated. It was found that the radiative heat transfer absolutely dominates over the conduction mode. The increase in particle size was seen to contribute to an obvious increase in burning velocity for fuel lean and stoichiometric mixture. But for fuel rich mixture, the burning velocity was found to exhibit a weaker dependence on particle size.

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(1): Homogeneous Charge (정적연소기에서의 메탄-공기 혼합기의 연소특성(1) : 균질급기)

  • 최승환;전충환;장연준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-57
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of homogeneous charge methane-air mixture under various initial pressure, excess air ratio and ignition times in quiescent mixture. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer and flame propagation acquired by ICCD camera were used to investigate the effect of initial pressure, excess air ratio and ignition times on pressure, combustion duration, flame speed and burning velocity. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to near 0 value gradually after 3 seconds. Combustion duration, flame speed and burning velocity were observed to be promoted with excess air ratio of 1.1, lower initial pressure and ignition time of 300ms.

A Study on Turbulent Flame Propagation Model of S. I. Engines (스파크 점화기관의 난류 화염전파모델에 관한 연구)

  • 유욱재;최인용;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2787-2796
    • /
    • 1994
  • The modeling of combustion process is an important part in an engine simulation program. In this study, calculated results using a conventional B-K model and the other model which is called GESIM were compared with experimentally measured data of a three-cylinder spark-ignition engine under wide range of operating conditions. The burn rates calculated from the combustion models were compared with the burn rate calculated from the one-zone heat release analysis that uses measured pressure data as an input data. As a result of the two models' comparison, the GESIM combustion model conformed to be closer to the data acquired from the experiment in wide operating ranges. The GESIM model has been improved by introducing a variable that considers the flame size, the area of flame conacting the piston surface into the model, based on the comparison between the experimental result and the calculated results. The improved combustion model predicts experimental results more precisely than that of GESIM combustion model.

A Study on the Characteristics of D. I. Diesel Spray·Flame in Operating Condition (Analysis by Diffused Background Illumination Method) (운전조건에 따른 D.I. 디젤기관의 분무·화염의 특성에 관한 연구 (배경산란광그림자사진법에 의한 해석))

  • Ra, J.H.;Lee, D.B.;Ahn, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.30-40
    • /
    • 1995
  • Optically accessible D. I. diesel engine with a rectangular combustion chamber was constructed to visualize the behaviors of sprays and flames in the combustion camber with the close conditions of pressure and temperature in an actual engine. The behaviors of sprays and flames in the combustion chamber as the operating conditions of this engine were photographed with high speed camera by Diffused Background Illumination Method. With photographs taken by this method, behavior of spray droplets injected into the combustion chamber, ignition points, and flame propagation were observed and analyzed at a time-and space-dependent fashion.

  • PDF

A Study on the Flame Propagation Velocity of Methyl Alcohol (메틸알콜의 화염전파속도에 관한 연구)

  • Choi Jae-Wook
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.44-51
    • /
    • 2005
  • The flame propagation velocity and the flame arrival time of methyl alcohol, which is widely used as a material of paint industry and organic synthesis, d mixing solvent, and an analytical reagent, were examined at different temperatures and concentrations. It was found that the smaller the vessel size, the easier and faster the combustion. The maximum combustion velocity was 200 cm/sec in the small vessel at $30^{\circ}C$. The flame arrival time was determined to be longer with larger vessels. and shorter with higher concentrations.

Effects of Explosion Pipe Structure on the Flame Propagation Velocity and the Quenching Ability of Ceramic Honeycomb Monolity (화염전파속도에 대한 폭발관 구조의 영향과 세라믹 소염소자의 소염성능)

  • 김영수;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.56-61
    • /
    • 1995
  • The behaviors of flame propagation and quenching in a pipe were investigated to make a design criteria of flame arrester. The effects of sealing condition of pipe end, pipe diameter and lengh were studied, and also the effects of thickness of ceramic honycomb monolith on the quenching ability were discussed. Experimental results showed that the flame velocity in case of closed pipe was increased about twenty times faster than that of opened and the sealing coditions of pipe end and length showed significant effects on it. The quenching ability of ceramic honycomb monolith was Increased with thickness and coincided well with Palmer's equation.

  • PDF

PROPAGATION PROCESSES OF NEWLY DEVELOPED PLASMA JET IGNITER

  • Ogawa, Masaya;Sasaki, Hisatoshi;Yosgida, Koji;Shoji, Hideo;Tanaka, Hidenori
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In plasma jet ignition, combustion enhancement effects occur toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of a cylindrically shaped combustion chamber, plasma jet should issue toward the round combustion chamber wall. The plasma jet igniter that had an annular circular orifice has been developed. The purpose of this study is to elucidate the relationship between the newly developed plasma Jet igniter configuration and combustion enhancement effects. In this newly developed plasma Jet igniter, flame front wrinkle appears on the flame front and flame propagates rapidly. Plasma Jet influences on the flame propagation far long period when the plasma jet igniter has issuing angle 90 degrees and large cavity volume, because the plasma jet only lasts several ms. However, in the early stage of combustion, flame front area of issuing angle 45 degrees is larger than that of 90 degrees, because the initial flame kernel is formed by the plasma jet.

A Study on Combustion Characteristics of Fire Retardant Treated Wood (난연처리된 목재의 연소특성에 관한 연구)

  • Park, Hyung-Ju;Kang, Young-Goo;Kim, Hong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.4 s.132
    • /
    • pp.38-44
    • /
    • 2005
  • This study was carried out to investigate the combustion characteristics of flame retardant treated wood by water-soluble flame retardants which are made from mixture of aqueous solution of monoammonium phosphate, sodium borate and zinc borate. The combustion characteristics for flame retardant treated wood were carried out using thermal analysis (TGA, combustion heat) and flame retardant test (LOI, flame propagation). The results of thermal analysis and flame retardant test are as follows; 1) The sample treated by F4 showed excellent flame retardant effects in almost all of combustion characteristics. 2) From TGA curves, all the samples undergo pyrolysis and oxidation in two main discrete steps. 3) The effect of flame retardant for softwood is higher than those for hardwood, and the combustion heat has decreased with increase of the content of flame retardant. 4) LOI values are almost similar in flame retardant treated wood samples. The range of LOI is from 24 to 30. However, these values are much higher than LOI value of non-treated wood sample. 5) The blended aqueous solution had a final in the range of about pH 8.4, and a slight odor of ammonia.