• Title/Summary/Keyword: Flame mode

Search Result 133, Processing Time 0.03 seconds

The Effects of Spray Parameters on the Flame and Spray Characteristics for Liquid Fuel Spray Flame (액체연료 의 분사연소시 분사조건 이 화염 과 액적군 의 성질 에 미치는 영향)

  • 김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.201-209
    • /
    • 1984
  • In order to examine the effect of initial spray condition on the spray combustion mode and flame characteristics, theoretical analysis was carried out to predict combustion mode and flame structure for various initial distribution of droplets in spray. A system of conservation equations of spray flame in two dimensional axisymmetric for two phase flow was solved by a discrete element method for n-Butylbenzen (C$_{10}$ $H_{14}$). As a results of present study, there are two principal group combustion modes that may occur independently for various initial group combustion numbers in a spray burner. These group combustion modes are termed as an external and internal group combustion mode. The critical group combustion number between the internal and external group combustion mode and the flame characteristics of those flame are also predicted. These results may be used as a basic data in the designing of new combustors as well as proper operating conditions for spray burners.s.

A Study on Combustion-Driven Oscillations in a Surface Burner (표면연소기의 연소진동음에 관한 연구)

  • Han, Heekab;Kwon, Youngpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1582-1590
    • /
    • 1998
  • Combustion-driven oscillations in a surface burner have been investigated to clarify their characteristics. A model combustor is made and the oscillation frequencies are measured for various dimensions of the combustor. It is found that there are two modes of oscillations; one is the 'acoustic mode' at high frequencies, associated with the acoustic mode of the combustion system and the other is the 'combustion mode' at low frequencies around 100 Hz, associated with the instability of the flame. Acoustic mode is excited when the surface burner is placed where the phase of particle velocity leads that of acoustic pressure by $90^{\circ}$, for all the combustion conditions. Combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. Combustion mode is greatly influenced by the inlet temperature of the premixed gas. When the inlet temperature is very high, the combustion mode does not occur.

Edge Flame Instability of CH4-Air Diffusion Flame Diluted with CO2 (이산화탄소로 희석된 메탄-공기 확산화염의 에지화염 불안정성)

  • Hwang, Dong-Jin;Kim, Jeong-Soo;Keel, Sang-In;Kim, Tae-Kwon;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.905-912
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss in addition to radiative loss could be remarkable at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this sheets flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations are categorized into three: a growing-, a harmonic- and a decaying-oscillation mode. Onset conditions of the edge flame oscillation and the relevant modes are examined with global strain rate and $CO_2$ mole fraction in fuel stream. A flame stability map based on the flame oscillation modes is also provided at low strain rate flames.

A Numerical Study on Flame Stability with Extended Combustor in Superdetonative Mode Ram Accelerator (초폭굉 모드 램 가속기의 연소실 길이에 따른 화염유지특성에 대한 수치적 연구)

  • Sung, Kun-Min;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.31-38
    • /
    • 2007
  • An numerical study was conducted on superdetonative mode ram accelerator with length extended combustor. The computation condition was based on ISL's RAMAC30 II S225 experiment. For 50% length increased combustor, flame is not sustained. For the case of 60% and 70% increase, flame is successfully sustaind. But detonation wave is oscillating and acceleration is fluctuating. Extention of combustor is helpful for sustaing detonation wave but it may cause unstart.

  • PDF

A Numerical Study on Flame Stability with Extended Combustor in Superdetonative Mode Ram Accelerator (초폭굉 모드 램 가속기의 연소실 길이에 따른 화염유지특성에 대한 수치적 연구)

  • Sung, Kun-Min;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.126-129
    • /
    • 2007
  • An numerical study was conducted on superdetonative mode ram accelerator with extended combustor. The computation case was based on ISL's RAMAC30 II experiment. For 50% length increased combustor, flame is not sustained. For the case of 60% and 70% increase, flame is successfully sustaind. But detonation wave is oscillating and acceleration is fluctuating. Increasing of combustor length is helpful for sustaing detonation wave but it may cause unstart.

  • PDF

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

Study on the Smoke Density Characteristics of Flame Retardant Sol Manufactured by a Sol-gel Method (졸-겔법으로 제조된 방염제졸의 연기밀도 특성에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.11-18
    • /
    • 2017
  • In this study, a non-halogen type organic-inorganic hybrid flame retardant sol, which can impart flame resistance to synthesize silicate of inorganic material and silane coupling agent of organic material by a sol-gel method, were newly manufactured. The addition of flame retardant will prevent loss of life in a fire because smoke from the flammability of interior finishing materials used as the construction materials poses a major danger. The smoke density measurement standard based on flame retardant performance standards, experiments were conducted according to the test equipment and procedures of ASTM E 662. The non-flaming mode experiment and the flaming mode experiment were conducted to confirm the performance of the manufactured flame retardant sol. As a result, the manufactured flame retardant sol improved the physical properties and heat resistance of existing flame retardants, and decreased the smoke production of the fire. Therefore, it may be possible to reduce the damage caused by smoke and expand the applications to various interior finishing materials.

Edge-flame Instability in A Low Strain-rate Counterflow Diffusion Flame (저신장율 대향류확산화염에서 에지화염 진동불안정성)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Song-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.295-298
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation. Edge flame oscillations in low strain rate flames are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames.

  • PDF

Experimental Study on Edge Flame Instabilities in Solid Rocket Combustion (고체로켓연소에서 에지화염 불안정성에 대한 실험적 연구)

  • Hwang Dong-Jin;Park Jeong;Kim Jeong-Soo;Kim Sung-Cho;Kim Tae-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.279-282
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations are categorized into three: a growing-, a decaying-, and a harmonic-oscillation mode.

  • PDF

Interaction Mode Change According to the Equivalence Ratios in the Interacting Methane and Hydrogen Counterflow Premixed Flames (상호작용하는 대향류 메탄 및 수소 예혼합화염에서 당량비 조건에 따른 상호작용 모드 변화)

  • Park, Ji-Woong;Oh, Chang Bo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.13-16
    • /
    • 2012
  • The interaction between methane and hydrogen premixed flames with the different equivalence ratio and global strain rate was investigated numerically in one-dimensional counterflow field. The OPPDIF code and GRI-v3.0 were used to simulate the interacting flames. Overall trends in the maximum heat release rates of $CH_4{^-}$ and $H_2$-side flame were examined with the variation of $a_g$. The interaction mode of the flames were classified according to the equivalence ratios and Lewis numbers of each flame and global strain rate.

  • PDF