• Title/Summary/Keyword: Flame length

Search Result 327, Processing Time 0.03 seconds

LES Studies on the Characteristics of Turbulent Premixed Flame with the Configurations of Burner Exit (버너 출구의 형상변화에 따른 난류 예혼합 화염의 특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.96-104
    • /
    • 2006
  • In the present paper, the effects of combustion instability on flow structure and flame dynamic with the configurations of burner exit in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. As a result of mean flow field, the change of divergent half angle(${\alpha}$) at burner exit results in variations in the size and shape of the central toroidal recirculation(CTRZ) as well as flame length by changing corner recirculation zone(CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than that of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is the most shortest, while that in the case of ${\alpha}=30^{\circ}$ is the longest by the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it is identified that the case of ${\alpha}=45^{\circ}$ shows the most largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, comparing with that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons are discussed in detail through the analysis of unsteady phenomena about recirculation zone and flame surface. Finally the effects of flame-acoustic interaction are evaluated using local Rayleigh parameter.

  • PDF

A Study on the Characteristics of Flames in a Valve Driven Oscillating Combustion Burner (밸브 구동 진동연소기의 화염특성 연구)

  • Kim, Ki-Seong;Kim, Han-Uk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.130-137
    • /
    • 2004
  • The flame patterns were investigated in an oscillating combustion burner equipped with a proportioning valve. The proportioning valve is driven by a solenoid and has an elastomer part which controls the valve opening area. For characterizing the valve, nozzle exit velocities were measured with a Hot Wire Anemometry. The flame patterns were investigated by direct photographing methods using a high speed camera and a digital camera. The results show that the nozzle exit velocities could be controlled diversely and rose up and fell down abruptly, so the valve seemed appropriate for the application for the oscillating combustion burner. Mushroom shaped and highly wrinkled flames were a typical features of the oscillating combustion burner. As the oscillating intensity of the fuel flow increased, the flame length was shortened.

  • PDF

Reduction of NOx Emissions in Turbulent Hydrogen Diffusion Flame using Acoustic Excitation (음파가진에 의한 동축공기 수소 확산화염의 NOx 배출저감연구)

  • Kim, Mun-Ki;Han, Jeong-Jae;Yoon, Sang-Wook;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2005
  • Measurements of flame length and NOx emissions have been conducted to investigate the effects of acoustic excitation on flame structure in turbulent hydrogen diffusion flames with coaxial air. When the acoustic excitation of a specific frequency is applied to coaxial air stream, flame length is dramatically reduced, resulting in reduction of flame residence time. Consequently, EINOx could decrease up to 35 % and this shows that acoustic excitation is effective in reducing NOx emissions. Mie scattering technique has been used to visualize the vortex structure induced by acoustic excitation and vortex formation, development and destruction were observed quantitatively. As a result, vortex entrains coflow air into fuel stream and mixing rate between fuel and air is significantly enhanced, which may contribute to reduction of NOx emissions.

  • PDF

NOx Emission Reduction and Mixing Enhancement of Turbulent Hydrogen Diffusion Flame by An Acoustic Excitation (음파가진에 의한 수소 확산 화염의 NOx 배출저감 및 혼합증진)

  • Han, Jeong-Jae;Kim, Mun-Ki;Yoon, Sang-Wook;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.305-313
    • /
    • 2005
  • Measurements of flame length, width and NOx emissions have been conducted to investigate the effect of an acoustic excitation on flame structure in turbulent hydrogen diffusion flames with coaxial air. The resonance frequency of oscillations was varied between 259 ,514 and 728 Hz with power rate of 0.405 and 2.88w. When these frequencies imposed to hydrogen flames, dramatic reduction of flame length and NOx emission was achieved. And acetone planar laser-induced fluorescence technique was used to measure a concentration of the near field of driven axisymmetric jet. The air-fuel stoichiometric line was plotted to investigate the mixing layer and development of air entrainment to fuel jet. Consequently, acoustic excitation on flame could enhance the air-fuel mixing resulting in abatement of NOx emission quantitatively.

  • PDF

A Study on the Characteristics of Flames in a Valve Driven Oscillating Combustion Burner (밸브 구동 진동연소기의 화염특성 연구)

  • Kim, Ki-Seong;Kim, Han-Uk
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.3
    • /
    • pp.36-43
    • /
    • 2004
  • The flame patterns were investigated in an oscillating combustion burner equipped with a specially designed proportioning valve. The proportioning valve is driven by a solenoid and has an elastomer part which controls the valve opening area. For characterizing the valve, nozzle exit velocities were measured with a hot wire anemometry. The flame patterns were investigated by direct photographing methods using a high speed camera and a digital camera. The results show that the nozzle exit velocities could be controlled diversely and rapidly changed, so the valve seemed appropriate for the oscillating combustion burner application. Mushroom shape and highly wrinkled structure were typical features of the flames in the oscillating combustion burner. As the oscillating intensity of the fuel flow increased, the flame length was shortened.

  • PDF

LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.

Local Concentration and Flame Temperature Characteristics of Combustion Product in Premixed LPG/Air Flames (예혼합 LPG/공기화염에서 연소생성물의 국소농도 및 화염온도특성)

  • 김태권;장준영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.77-84
    • /
    • 2001
  • Measurements of local CO, $CO_2$, $O_2$, $N_2$, $C_3$H$_{8}$, NOx concentrations and flame temperature are made for partially premixed flame with and without acoustic excitation. The CO, $CO_2$, $O_2$, $N_2$, and $C$_3$H_8$ concentrations are determined by thermal conductivity detection (Gas-chromatograph) and NOx concentrations are determined by chemiluminescent detection (NOx analyser). To measure local sample concentration, sampling probe was made by quartz with inlet diameter of 0.25mm. In the case of excitation, the visual shape of the flame is changed from laminar flame to turbulent-like flame. The flame length is also reduced, and the flame width becomes broad. In the observation of emission concentration without acoustic excitation, meanwhile, the $CO_2$ and NOx concentrations peak at flame front where the mixture meets with surrounding air, and the CO concentration is increasing at maximum position of CO2 concentration and peaks at the centerline of the burner. In the case of acoustic excitation, the $CO_2$ concentration is widely occurred at nozzle of the burner and is higher relative to unexcitation. The CO concentration is much reduced, but NOx concentration is more increasing. And flame temperature is higher relative to unexcitation. These are caused by enhancing of mixing with surrounding air due to excitation. However, in the case of acoustic excitation, the total NOx concentration is reduced because of the shortened flame length which affects residence time.e.

  • PDF

Flame Retardancy of Wood Products by Spreading Concentration and Impregnation Time of Flame Retardant (방염제의 도포량과 침지시간 차이에 따른 목재제품의 방염성능)

  • PARK, Sohyun;HAN, Yeonjung;SON, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.417-430
    • /
    • 2020
  • The flame retardancy, such as carbonized length and area, of four plank type wood products by the spreading concentration and impregnation time of flame retardant were measured according to standard of the Nation Fire Agency in Republic of Korea. To measure the flame retardancy, Korean pine plywood, Japanese larch plywood, Japanese cypress planks, and perforated birch plywood boards were treated with self-development flame retardant by 300 and 500 g/㎡ spreading concentration and those were compared with control specimen. In general, the flame retardant performance of wood products improved as the spreading concentration of flame retardant increased. Except for Japanese larch plywood, there was no significant difference in the flame retardant performance by the spreading concentration. The flame retardant performance of perforated birch plywood board was positively correlated up to 60 minutes of impregnation time, but then gradually decreased. These results about the flame retardancy of wood products by spreading concentration and impregnation time were expected to be basic data for improving flame-retardant treated wood.

Acceleration in Diffusive-thermal Instability by Heat Losses (열손실에 의한 확산-열 불안정성의 가속화)

  • Park, June-Sung;Park, Jeong;Lee, Kee-Man;Kim, Jeong-Soo;Kim, Sung-Cho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.145-152
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The dramatic change of burner diameters in which flame length is an indicator of lateral conduction heat loss was applied to examine the onset condition of edge flame oscillation and flame oscillation modes. Especially, extinction behaviors quite different from the previous study were observed.

  • PDF

Flame Retardant Performance of Wood Treated with Flame Retardant Chemicals

  • Park, Hee-Jun;Mingyu-Wen, Mingyu-Wen;Cheon, Sang-Hun;Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.311-318
    • /
    • 2012
  • This study investigated the flame retardant performance of developed four types of flame retardant chemicals (FRC), FRC-A, B, C and D. Four kinds of soft wood species, Sugi (Cryptomeria), Spruce (Picea abies), Hinoki (Chamaecyparis obtusa) and Korean pine (Pinus koraiensis), were used. The wood specimens were treated by spreading the FRC on the surface with different quantities, 30, 50, 70, 90, 110 g/$m^2$, respectively. The charred area, charred length, after flame time and after glow time were tested. And their suitabilities as incombustible materials were evaluated. The specimen treated by FRC-D showed better incombustible properties than others, even though with lower quantity. Therefore it is supposed that the FRC-D could be able to be applied on the cultural heritage, such as Korean wooden house for preventing fire.