• 제목/요약/키워드: Flame atomic absorption spectrometry

검색결과 30건 처리시간 0.026초

원자흡수법을 이용한 다원소 동시 분석 실험 조건에 관한 기초 특성 연구 (Characterization and Studies of Compromised Experimental Conditions for the Simultaneous Multielemental Analysis by Flame Atomic Absorption Spectrometry)

  • 최성규;이현주;박양순;김효진
    • 약학회지
    • /
    • 제39권2호
    • /
    • pp.148-152
    • /
    • 1995
  • For comparison between the compromised experimental condition and the best conditions for each element by flame atomic absorption spectrometer, the absorbances were measured with changing the burner height and HCL current. The optimum absorbance for simultaneous analysis of 6 elements was observed at 1 mA of HCL current and at 4 mm of burner height except Cr and Co. The stability of flame atomic absorption spectrometer on each element was found to be better than 5%. To investigated the accuracy of this instrument, POSCO RM-07 as a real sample was analysed at these compromised experimental conditions and found to be better than 0.04%.

  • PDF

토양 시료 중 Atomic Absorption Spectrometry (AAS) 및 Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES)를 이용한 총 크롬 분석방법 비교 (Comparison of analytical methods for quantifying total chromium in soil using Atomic Absorption Spectrometer (AAS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES))

  • 이홍길;김지인;변윤주;김현구;윤정기
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권6호
    • /
    • pp.22-28
    • /
    • 2017
  • The accuracy of analytical results in response to the use of different additives ($NH_4Cl$, KCl, $LaCl_3$) and oxidant gases was evaluated and compared by using Atomic Absorption Spectrometry (AAS). Identification of spectroscopic interferences and possible improvements in Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) analysis were also discussed. The average accuracies of total chromium using Certified Reference Materials (CRMs) were found to be 72.1~94.2% in air/acetylene flame condition by AAS, and they were improved to 100.5~110.5% when the oxidants was changed to nitrous oxide rather than adding the additives. The field samples showed similar trends to CRMs, but chromium concentrations were highly variable depending on analytical conditions. The average accuracies using CRMs were estimated to be 89.3~166.1% by ICP-AES, and improved to below 121.7% after eliminating iron interference. Field samples with low chromium and high iron concentration were measured to be > 30% lower in total chromium concentrations by ICP-AES than AAS in nitrous oxide/acetylene flame. Total chromium concentrations in soil could be analyzed with better accuracy under nitrous oxide/acetylene flame by AAS because it was more effective to increase the temperature of the flame than to eliminate the chemical interference for maximizing atomization of chromium. When using ICP-AES, interference substances, total chromium levels, and analytical conditions should be also considered.

Indirect Determination of Nitrite by Flame Atomic Absorption Spectrometry Using a Lead(IV) Dioxide Oxidant Microcolumn

  • Noroozifar, Meissam;Khorasani Motlagh, Mozhgan;Taheri, Aboozar;Homayoonfard, Marjan
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권6호
    • /
    • pp.875-880
    • /
    • 2006
  • A new, simple and fast flow injection analysis (FIA) method has been developed for the indirect determination of nitrite. The proposed indirect automatic method is based on the oxidation of nitrite to nitrate using a lead(IV) dioxide oxidant microcolumn where the flow of the sample through the microcolumn reduces the $PbO_2$ solid phase reagent to Pb(II), which is measured by flame atomic absorption spectrometry. The absorbance of Pb(II) are proportional to the concentration of nitrite in the samples. The calibration curve was linear up to 30 mg $L ^{-1}$, with a detection limit of 0.11 mg $L ^{-1}$ for a 400 mL injected sample volume and a sampling rate of about 80 $h ^{-1}$. The results exhibit no interference from the presence of large amounts of ions. The developed procedure was found to be suitable for the determination of nitrite in foodstuffs and wastewaters. A relative standard deviation better than 0.9% was obtained in a repeatability study. The reliability of the method was established by parallel determination against the standard method.

Cr(Ⅲ) 와 Cr(Ⅵ)의 Aliquat 336을 이용한 추출분리 및 원자흡수분광법에 의한 정량 (Selective Determination Method of Cr(Ⅲ) and Cr(Ⅵ) by Aliquat 336 Extraction and Flame Atomic Absorption Spectrometry)

  • 김천한;황혜련
    • 대한화학회지
    • /
    • 제43권4호
    • /
    • pp.418-422
    • /
    • 1999
  • Cr(III)과 Cr(VI)이온 각각을 Aliquat 336으로 단계적으로 용매추출하여 분리하고 원자흡수분광법으로 정량하였다. 즉, $Cr^{3+}$$Cr_2O_7^{2-}$의 혼합용액으로부터 Aliquat 336/MIBK로 먼저 $Cr_2O_7^{2-}$을 선택적으로 추출하고, 그 추출액 중의 농도를 $N_2O-C_2H_2$ 불꽃으로 측정한 다음, 남은 수용액에 citrate를 가하여 $Cr^{3+}$을 음의 착이온으로 만들어 같은 추출제를 사용하여 같은 방법으로 추출 및 정량하였다. $Cr^{3+}$$Cr_2O_7^{2-}$의 농도가 Cr로서 각각 0.1∼1.0 g/mL 범위의 혼합시료 50mL부터 1%(V/V) Aliquat 336/MIBK 5 mL로 1회씩 추출하여 각 농도에 대한 분석결과, 회수율이 98.8∼101.7%였다.

  • PDF

Development of Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop for the Sensitive Determination of Trace Copper in Water and Beverage Samples by Flame Atomic Absorption Spectrometry

  • Wu, Chunxia;Zhao, Bin;Li, Yingli;Wu, Qiuhua;Wang, Chun;Wang, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.829-835
    • /
    • 2011
  • A dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) has been developed as a new approach for the extraction of trace copper in water and beverage samples followed by the determination with flame atomic absorption spectrometry. In the DLLME-SFO, 8-hydroxy quinoline, 1-dodecanol, and methanol were used as chelating agent, extraction solvent and dispersive solvent, respectively. The experimental parameters related to the DLLME-SFO such as the type and volume of the extraction and dispersive solvent, extraction time, sample volume, the concentration of chelating agent and salt addition were investigated and optimized. Under the optimum conditions, the enrichment factor for copper was 122. The method was linear in the range from 0.5 to $300\;ng\;mL^{-1}$ of copper in the samples with a correlation coefficient (r) of 0.9996 and a limit of detection of $0.1\;ng\;mL^{-1}$. The method was applied to the determination of copper in water and beverage samples. The recoveries for the spiked water and beverage samples at the copper concentration levels of 5.0 and $10.0\;ng\;mL^{-1}$ were in the range between 92.0% and 108.0%. The relative standard deviations (RSD) varied from 3.0% to 5.6%.

원자흡수분광법에 의한 다원소 동시분석시 조건의 최적화 (Optimization of Parameters for Simultaneous Multielemental Analysis by Atomic Absorption Spectrometry)

  • 김효진;강종성
    • 분석과학
    • /
    • 제6권4호
    • /
    • pp.359-362
    • /
    • 1993
  • 원자흡수분광법으로 여러 원소를 동시분석시 최적 조건을 위하여 연료의 종류, 연료의 양 및 버너 높이의 변화에 대해 10가지 원소의 흡광도를 측정하였다. Air-$C_2H_2$를 연료로 과량을 사용하고, 버너 높이가 2mm일 때 최적 흡광도를 나타내었고, 이때 10가지 원소의 상대흡광도의 평균은 73%였다.

  • PDF

Preconcentration and Determination of Fe(III) from Water and Food Samples by Newly Synthesized Chelating Reagent Impregnated Amberlite XAD-16 Resin

  • Tokahoglu, Serife;Ergun, Hasan;Cukurovah, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1976-1980
    • /
    • 2010
  • A simple and reliable method has been developed to selectively separate and concentrate trace amounts of Fe(III) ions from water and food samples by using flame atomic absorption spectrometry. A new reagent, 5-hydroxy-4-ethyl-5,6-di-pyridin-2-yl-4,5-dihydro-2H-[1,2,4] triazine-3-thione, was synthesized and characterized by using FT-IR spectroscopy and elemental analysis. Effects of pH, concentration and volume of elution solution, sample flow rate, sample volume and interfering ions on the recovery of Fe(III) were investigated. The optimum pH was found to be 5. Eluent for quantitative elution was 10 mL of 2 M HCl. The preconcentration factor of the method, detection limit (3s/b, ${\mu}gL^{-1}$) and relative standard deviation values were found to be 25, 4.59 and 1%, respectively. In order to verify the accuracy of the method, two certified reference materials (TMDA 54.4 lake water and SRM 1568a rice flour) were analyzed. The results obtained were in good agreement with the certified values. The method was successfully applied to the determination of Fe(III) ions in water and food samples.

Determination of Trace Amounts of Lead and Copper in Water Samples by Flame Atomic Absorption Spectrometry after Cloud Point Extraction

  • Shemirani, Farzaneh;Abkenar, Shiva Dehghan;Khatouni, Asieh
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권8호
    • /
    • pp.1133-1136
    • /
    • 2004
  • The need for highly reliable methods for the determination of trace metals is recognized in analytical chemistry and environmental science. A method based on the cloud-point extraction (CPE) technique for the trace analysis of Pb and Cu in water samples is described in this study. The analytes in the initial aqueous solution are complexed with pyrogallol, and 0.1%(w/v) Triton X-114 is added as surfactant. Following phase separation at $50^{\circ}C$, based on the cloud point of the mixture and dilution of the surfactant-rich phase with acidified methanolic solution, the enriched analytes are determined by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, the enrichment factors of Pb and Cu were found to be 72 and 85, respectively. Under optimum conditions, the preconcentration of 60 mL of samples in the presence of 0.1%(w/v) Triton X-114 permitted the detection of 0.4 ${\mu}gL^{?1}$ of Pb and 0.05 ${\mu}gL^{?1}$ of Cu. The proposed method was applied successfully to the determination of Pb and Cu in water samples.

Determination of Lead in Different Samples by Atomic Absorption Spectrometry after Preconcentration with Dithizone Immobilized on Surfactant-Coated Alumina

  • Dadfarnia, S.;Haji Shabani, A.M.;Dehgan Shirie, H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권4호
    • /
    • pp.545-549
    • /
    • 2002
  • A simple and rapid technique for the separation and preconcentration of lead in water and biological samples has been devised. Preconcentrationis based on the depositionof analyte onto a column packed with dithizone immobilized on sodium dodecyl sulfate coated alumina at pH $\geq$ 3. The trapped lead is eluted with 5 mL of 4 M nitric acid and determined by flame atomic absorption spectroscopy. A sample of 1 L, results in a preconcentration factor of 200 and the precision at 20${\mu}g$ $L^{-1}$ is 1.3%(n=8). The procedure is applied to tap water, well water, river water, vegetable extract and milk samples, and accuracy is assessed through recovery experiments and by independent analysis by furnace atomic absorption.