• Title/Summary/Keyword: Flame Structure

Search Result 610, Processing Time 0.031 seconds

Fully coulpled CMC modeling for three-dimensional turbulent nonpremixed syngas flame (CMC 모델을 이용한 난류 비예혼합 Syngas 화염장 해석)

  • Kim, Gun-Hong;Lee, Jung-Won;Kim, Yong-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.111-120
    • /
    • 2006
  • The fully coupled conditional moment closure(CMC) model has been developed to realistically simulate the structure of complex turbulent nonpremixed syngas flame, in which the flame structure could be considerablyl influenced by the turbulence, transport history, and heat transfer as well. In order to correctly account for the transport effect, the CMC transport equations fully coupled with the flow and mixing fields are numerically solved. The present CMC approach has successfully demonstrated the capability to realistically predict the detailed structure and the overall combustion characteristics. The numerical results obtained in this study clearly reveal the importance of the convective and radiative heat transfer in the precise structure and NOx emission of the present confined combustor with a cooling wall.

  • PDF

Investigation of Effects of Duct Thickness an Counterflow Flam Structure (닥트두께가 대향류 화염구조에 미치는 영향의 조사)

  • Park, Woe-Chul;Ko, Kyung-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.61-65
    • /
    • 2002
  • Nonpremixed counterflow flames at low strain rates, $ag=12s^{-1}$ and $12s^{-1}$, were numerically simulated to investigate the effects of the duct thickness on the flame structure in normal gravity. For small values of the duct thickness, the positions of the flame and stagnation point were highly sensitive to the duct thickness. When the duct thickness was greater than 6mm, however, the effects of the duct thickness on the flame structure were negligible. The computed temperature along the duct centerline agreed well with measurements.

A Numerical Analysis of Flame Liftoff Height and Structure with the Variation of Velocity Profiles at the Nozzle Exit (연료노즐 출구에서의 속도 형상에 따른 부상화염 높이 및 화염구조에 관한 수치해석 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.21-28
    • /
    • 2008
  • A numerical analysis is achieved to elucidate the behavior of lifted flames and characteristics of flow near flame zone according to the exit velocity of triple flame, Poiseuille and uniform distribution. For the cases of Poiseuille and uniform nozzle exit velocity, we reviewed previous results with the present numerical results and investigated characteristics of the flame structure near the flame zone comparing with liftoff height generalized by momentum flux. In addition, a close inquiry into the combustion flow characteristics near flame zone was made with the characteristics of velocity, pressure, temperature and chemical reaction. From nozzle to flame zone, center line velocity profile traced well with the velocity profile of typical cold jet flow, but very near the flame zone, this study examined phenomenon that flow velocity decreases very quickly before the flame zone and then increases very quickly after the flame zone. Because flame zone acts as a barrier at the flow region which is before the flame zone and accelerate the flow velocity when it pass through the flame zone. This phenomenon was not clarified previous cold jet flow.

  • PDF

Flame Transfer Function Measurement in a Premixed Combustor (예혼합 연소기에서의 화염 전달 함수 측정)

  • Kim, Dae-Sik;Kim, Ki-Tae;Chen, Seung-Bae;Lee, Jong-Guen;Santavicca, Domenic
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • An experimental study of the flame response in a turbulent premixed combustor has been conducted with room temperature, atmospheric pressure inlet conditions using premixed natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable speed siren. Measurements are made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function as a function of the modulation frequency. Of particular interest is the effect of flame structure on the flame response predictions and measurements. The results show that both the gain and the phase of flame transfer function are closely associated with the flame length and structure, which is dependent upon the upstream flow perturbation as well as equivalence ratio in the current study.

  • PDF

Effects of Combustion Atmosphere Pressure on Non-premixed Counterflow Flame (비예혼합 대향류 화염에서 연소 분위기 압력 영향 연구)

  • Lee, Kee-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.853-862
    • /
    • 2006
  • The present study is numerically investigated the flame structure of non-premixed counterflow jet flames using the laminar flamelet model Detailed flame structures with the fuel composition of 40% CO, 30% $H_2$. 30% $N_2$ and an oxidizer composition of 79% $N_2$ and 21% $O_2$ in a non-premixed counterflow flame are studied numerically. This study is aimed to investigate the effects of axial velocity gradient and combustion atmosphere pressure on flame structure. The results show that the role of axial velocity gradient on combustion processes is globally opposite to that of combustion atmosphere pressure. That is, chemical nonequilibrium effects become dominant with increasing axial velocity gradient, but are suppressed with increasing ambient pressure. Also, the flame strength is globally weakened by the increase of axial velocity gradient but is augmented by the increase of ambient pressure. However, flame extinction is described better on the basis of only chemical reaction and in this study axial velocity gradient and ambient pressure play a similar role conceptually such that the increase of axial velocity gradient and ambient pressure cause flame not to be extinguished and extend the extinction limit, respectively. Consequently it is suggested that a combustion process like flame extinction is mainly influenced by the competition between the radical formation reaction and the third-body recombination reaction.

A Study of NO Formation Characteristics in Laminar Flames Using 2-D LIF Technique (2-D LIF를 이용한 층류화염의 NO 생성특성에 관한 연구)

  • Lee, Won-Nam;Cha, Min-Suk;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.38-48
    • /
    • 2003
  • OH, CH and NO radical distributions have been measured and compared with the numerical analysis results in methane/air partially premixed laminar flames using 2-D LIF technique. The pick intensity of OH LIF signal is insensitive to fuel equivalence ratio: however, CH LIF intensity decreases as equivalence ratio increases and the NO concentration increases with equivalence ratio. The contribution of the prompt NO, formed near premixed reaction zone, to the total NO formation is evident from the OH, CH, and NO PLIF images in which the dilution effect of nitrogen is minimal for the highest equivalence ratio. Measured OH and NO LIF signals in counterflow flames agree with the computed concentration distributions. Both numerical and experimental results indicate that the structural change in a flame alters the NO formation characteristics of a partially premixed counterflow flame. The nitrogen dilution also changes flame structure, temperature and OH radical distributions and results in the decreased NO concentrations in a flame. The levels of decrease in NO concentrations, however, depends on the premixedness(${\alpha}$) of a flame. The larger change in the flame structure and NO concentrations have been observed in a premixed flame(${\alpha}=1.0$), which implies that the premixedness is likely to be a factor in the dilution effect on NO formation of a flame.

  • PDF

Characteristics of Turbulent Nonpremixed Jet Flame in Cross Air Flow (주유동에 수직으로 분사되는 난류 비예혼합 분류 화염의 특성)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.125-132
    • /
    • 2002
  • An experimental study on the characteristics of stability of propane turbulent nonpremixed jet flames discharged normal to air free-streams with uniform velocity profile is conducted. Experimental observations are focused on the flame shape, the stability considering two kinds of flame, lift-off distance, and the flame length according to velocity ratio. In order to investigate the mixing structure of the flame base at the lower limit, we employ the RMS technique and measure the species concentration by a gas chromatography. In the results of the stability curve and lifted flame, it is fecund that the dependency of nozzle diameter is closely related to the large-scale vortical structure representing counter-rotating vortices pair. Also, the detailed discussion on the phenomenon of blowout due to this large vortical motion, is provided.

Application of G-equation to large eddy simulation of turbulent premixed flame around a bluff body inside a cylindrical chamber (G 방정식을 이용한 실린더 챔버 내부 둔각물체 주위의 난류 예 혼합 화염 해석)

  • Choi Chang-Yong;Park Nam-Seob;Ko Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.391-398
    • /
    • 2005
  • In this investigation, turbulent premixed combustion and flame front propagation in a gas turbine combustion chamber is studied. Direct numerical simulation of turbulent reacting flows demands extremely high computational resources, especially in more complicated geometry. The alternative choice may be left for Large Eddy Simulation (LES) by which only large scales are solved directly. In combustion problems, capturing the large scales' behavior without solving the details of small scales is a difficult task. Using a transport equation for description of the flame front propagation and therefore avoiding the calculation of inner flame structure is the basic idea of this study. For this purpose. the so-called G-equation has been used by which any iso-level of the G variable provides the flame location. A comparison with the experiment indicates that the present method can predict a turbulent velocity field and also capture a instantaneous 3-dimensional flame structure.

A study on the development of liquefied natural gas-fired combustor (액화천연가스 연소기개발에 관한 연구)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

A study on the Structure of Turbulent Diffusion Flame Behind the Hollowed Flame Holder (중앙분공형 보염기 후류에 안정된 난류확산화염의 구조에 관한 연구(I))

  • Kang, I.G.;Lee, W.S.;Kim, T.H.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 1998
  • The purpose of study is to investigate the flame stability and Structure of turbulent diffusion flame behind the hollowed flame holder, which is located on the waste gas coming out from the test furnace. Fluctuating temperature and ion current measurement and their statistical treatment were used for the purpose. Three types of flame were stabilized and each of which were changed by adequate equivalence ration. And we found that have no periodicity near reacting zone.

  • PDF