• 제목/요약/키워드: Flame Structure

검색결과 609건 처리시간 0.023초

동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II (An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II))

  • 조용대;최병윤
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1234-1243
    • /
    • 1990
  • 본 연구에서는 선회가 없는 중심기류와 주위기류의 난류 전단층에서 형성되는 난류확산화염의 천이영역(transition region)에 주목하여 전단층내의 혼합작용과 화염 구조와의 상호작용을 규명하기 위해 거시적 및 순간적인 화염구조에 대해 실험적으로 조사 연구한 결과를 보고한다.

산소부화를 통한 화염온도 변화에 따른 연소합성된 TiO2 나노입자의 결정구조 변화 (Effect of Oxygen-Enriched Flame Temperature on the Crystalline Structures of the Flame-Synthesized TiO2 Nanoparticles)

  • 이교우
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.692-699
    • /
    • 2006
  • In this work, $TiO_2$ nanoparticles were synthesized using $N_2-diluted$ and Oxygen-enriched co-flow hydrogen diffusion flames. The effect of flame temperature on the crystalline structure of the formed $TiO_2$ nanoparticles was investigated. The measured maximum centerline temperature of the flame ranged from 2,103k for oxygen-enriched flame to 1,339K for $N_2-diluted$ flame. The visible flame length and the height of the main reaction zone were characterized by direct photographs. The crystalline structures of $TiO_2$ nanoparticles were analyzed by XRD. From the XRD analysis, it was evident that the crystalline structures of the formed nanoparticles were divided into two sorts. In the higher temperature region, over the 1,700K, the fraction of formed $TiO_2$ nanoparticles having anatase-phase crystalline structure increased with increasing the flame temperature. On the contrary, in the lower temperature region, below the 1,600K, the fraction of anatase-phase nanoparticles increased with decreasing the flame temperature.

Reaction Zone Thickness of Turbulent Premixed Flame

  • Yamamoto, Kazuhiro;Nishizawa, Yasuki;Onuma, Yoshiaki
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.36-42
    • /
    • 2001
  • Usually, we use the flame thickness and turbulence scale to classify the flame structure on a phase diagram of turbulent combustion. The flame structure in turbulence is still in debate, and many studies have been done. Since the flame motion is rapid and its reaction zone thickness is very thin, it is difficult to estimate the flame thickness. Here, we propose a new approach to determine the reaction zone thickness based on ion current signals obtained by an electrostatic probe, which has enough time and space resolution to detect flame fluctuation. Since the signal depends on the flow condition and flame curvature, it may be difficult to analyze directly these signals and examine the flame characteristics. However, ion concentration is high only in the region where hydrocarbon-oxygen reactions occur, and we can specify the reaction zone. Based on the reaction zone existing, we estimate the reaction zone thickness. We obtain the thickness of flames both in the cyclone-jet combustor and on a Bunsen burner, compared with theoretically predicted value, the Zeldovich thickness. Results show that the experimentally obtained thickness is almost the same as the Zeldovich thickness. It is concluded that this approach can be used to obtain the local flame structure for modeling turbulent combustion.

  • PDF

연료액적 주변의 비정상 층류 화염장 해석 (Numerical Simulation of Transient Laminar Reacting Flows Around Fuel Droplets)

  • 유승원;강성모;김태준;김용모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.78-85
    • /
    • 2000
  • The transient laminar reacting flows around fuel droplet have been numerically analyzed. The physical models used in this study can account for the variable thermophysical properties and the chemistry is represent by the one-step global reaction model. The present study is focused on the vaporization and ignition characteristics, flame structure including wake flame, transition flame and envelope flame, and interaction between droplets. special emphasis is given to the triple flame structure and flame stabilization.

  • PDF

메탈화이버 버너의 화염구조 및 공해물질 배출 특성 (Numerical Study of Flame Structure and Emission Characteristics in Metal Fiber Burners)

  • 정준영;김용모
    • 한국연소학회지
    • /
    • 제16권3호
    • /
    • pp.27-32
    • /
    • 2011
  • This study has numerically investigated the flame structure and emission characteristics in the metal fiber burner. The one-dimensional premixed flame approach has been adopted to simulate the combustion processes of the metal fiber burner. Numerical results indicate that the present approach is capable of predicting the essential combustion characteristics of the metal fiber burner. Based on numerical results, the detailed discussion has been made for the effects of equivalence ratio and thermal load on the precise flame structure and the pollutant emission in the metal fiber burner.

미소 농도구배 조건에서 열손실 및 가연한계가 삼지화염의 확산화염에 미치는 영향에 대한 기초 연구 (Basic Study on Diffusion Branch of Tribrachial Flame with the Variation of Flammability Limits and Heat Loss Under Small Fuel Concentration Gradient)

  • 조상문;이민정;김남일
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.505-513
    • /
    • 2010
  • 삼지화염 구조는 화염 선단의 구조로서 다루어져 왔으며, 많은 연구자들에 의해 해석적인 방법과 실험적인 방법으로 연구가 되어왔다. 그러나 연료의 종류에 따른 가연한계의 차이가 삼지화염의 구조에 미치는 영향에 대한 연구는 깊이 있게 다루어지지 않았다. 본 연구에서는 화염 구조에 대한 비대칭 가연한계의 영향을 예혼합화염과 확산화염에 관한 몇 가지 층류화염 이론에 근거한 간단한 수치 기법을 통해 연구하였다. 고정된 유동장이 사용되었으며, 예혼합 화염 가지에서의 경계조건이 연계되었다. 예혼합 화염 후류의 확산화염의 형성과 소멸을 성공적으로 모사할 수 있었다. 비대칭 가연한계 조건과 열손실에 따른 확산화염의 변화가 연구되었다. 본 연구는 화염의 기초 구조에 대한 이해를 도울 수 있으며, 이후의 연구를 위한 기초로 활용될 수 있을 것이다.

메탄/공기 층류 부분 예혼합화염의 화염구조와 NOx 배출특성;예혼합 인자의 영향 (Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed $CH_4$/Air Flames;Effect of Premixing Degree)

  • 오정석;정용기;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.75-81
    • /
    • 2003
  • In this paper, the study of effects of flow variables on flame structure and NOx emission concentration was performed in co-axial laminar partially premixed methane/air flames. the objectives are to reveal its effect as parameters were varied and to understand the correlation between flame structure and NOx emission characteristics in the reaction zone. equivalence ratio(${\Phi}$), fuel split degree(${\sigma}$), and mixing distance(x/D) were defined as a premixing degree and varied within $1.36{\sim}3.17$(equivalence ratio), $50{\sim}100$(fuel split degree), and $5{\sim}20$(mixing distance). the image of $OH{\ast}$ and $CH{\ast}$, and NOx concentration were obtained with an ICCD camera and a NOx analyzer. additionally the maximum intensity location of $OH{\ast}$ chemiluminescence and $CH{\ast}$ chemiluminescence were measured to compare each flame structures. In conclusion flame structure and NOx emission characteristics were changed from diffused to premixed flame when mixing degree was on the increase. the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split degree(${\sigma}$), and finally mixing distance(x/D).

  • PDF

유선형 스텝에 의해 안정화된 예혼합화염의 구조와 연소특성에 관한 연구 ($\Pi$) (A Study on the Flame Structure and Combustion Charactexistics of a Premixed Flame Stabilized by a Streamline Step( $\Pi$))

  • 이재득;최병륜
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1661-1668
    • /
    • 1990
  • 본 연구에서는 코히런트 와(渦)에 지배되는 난류 예혼합화염의 미세구조를 밝 히기 위해 슐리이렌사진과 온도, 이온전류의 3가지를 동시에 측정하고, 그 변동량을 통계처리, 분석하여, 미시적인 화염구조 모델을 제시하고자 한다.

층류 부상화염 구조의 해석 (Analysis of the Laminar Lifted Flame Structure)

  • 김후중;김용모;김세원
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1098-1105
    • /
    • 1999
  • A lifted laminar flame structure has been numerically analyzed. The present study employs the physical submodels including the detailed chemical kinetics and the variable transport properties. The validation cases Include a lifted laminar CH4/air flame with a central diluted fuel jet and a surrounding fuel-lean coflow. Numerical results indicate the present approach successfully simulate the detailed structure and mechanism of the triple flame in the lifted laminar methane flame.

로브형 버너에서의 NOx 배출특성 (Characteristics of NOx emission in lobed burner)

  • 조한창;조길원;이용국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.140-147
    • /
    • 2000
  • Using lobed burner, flame visualization and measurements of NOx and CO concentration in the combustor exit were carried out to evaluate the relation between the lobed structure in a burner and pollutant emission characteristics. The flame stability is enhanced by the lobed burner compared to conventional circular one. The correlation on fuel discharge velocity for flame blowout should be included on a variable related to the wall effect of the burner, because the flame blowout is observed at the burner having large perimeter. The burner having lobed structure in fuel discharge side compared to conventional burner reduces by 5% NOx emission due to lower flame intensity through flame elongation. Meanwhile the burner having lobed structure in air discharge side and both fuel and air discharge side increase the NOx emission.

  • PDF