• 제목/요약/키워드: Flame Radiative Heat Transfer

검색결과 48건 처리시간 0.024초

덕트 버너의 추가에 따른 HRSG 내 화염 복사 열전달 산정방안에 대한 연구 (Study for Assessment of the Flame Radiative Heat Transfer in a HRSG with Duct burner)

  • 김대희;김승진;최상민;이봉재;김진일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.3-6
    • /
    • 2012
  • Analysis method for the radiation heat transfer from the duct burner flame to the heat exchanger in a Heat Recovery Steam Generator (HRSG) was presented to supplement the existing thermal design process. Flame on a burner and a heat exchanger were postulated as imaginary planes and flame temperature, surface and emissivity was simplified in a aspect of engineering approach. The calculated local flame radiative heat flux on the heating surface was compared with the heat flux of 3-atomic gas radiation and convection.

  • PDF

층류확산화염의 출사열전달 해석에 관한 연구 (A study on the radiative heat transfer analysis in a laminar diffusion flame)

  • 이도형;최병륜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.48-55
    • /
    • 1989
  • The purpose of present study is to evaluate both the radiative heat loss from a flame and the local formation and oxidation rate of soot. The present paper describes a comprehensive mathematical model to deal with combustion and radiative heat transfer simultaneously. The involved radiative heat transfer model was based on the "heat ray tracing method" originally proposed by Hayasaka et al.. Some predicted results were compared with the experiments.periments.

  • PDF

덕트 버너 추가에 따른 수직형 HRSG 내 화염 복사 열전달의 영향에 관한 연구 (Effect of Flame Radiative Heat Transfer in Horizontal-Type HRSG with Duct Burner)

  • 김대희;김승진;최상민;이봉재;김진일
    • 대한기계학회논문집B
    • /
    • 제37권2호
    • /
    • pp.197-204
    • /
    • 2013
  • 본 연구에서는 덕트 버너를 추가적으로 사용하는 수직형 배열회수 보일러(HRSG)에서 발생하게 되는 화염에 의한 전열면으로의 화염 복사 열전달에 의한 영향을 살펴보기 위한 해석 기법을 마련하였다. 덕트 버너 화염과 전열면은 가상의 평면으로 가정하였고, 화염 온도, 면적 및 방사율 입력정보는 간략화 하였다. 덕트버너 설치 위치 및 연료를 달리한 3 가지 해석 case 가 고려되었으며 계산된 화염 복사 열전달률과 열유속은 삼원자 가스 복사 및 대류 열전달과 비교되었다. 모든 해석 case 에서 삼원자 가스복사 열전달에 의한 영향은 미미하였고, 전열면에서 대류 열전달 대비 화염 복사 열전달률은 8~41%인 것으로 나타났다. 이 연구에서 얻은 중요한 사실은 화염 복사가 집중되는 전열면의 중앙부분에서 국부적인 열유속은 화염 복사에 의해 완전히 지배된다는 것이다.

CMC 모델을 이용한 난류 비예혼합 Syngas 화염장 해석 (Fully coulpled CMC modeling for three-dimensional turbulent nonpremixed syngas flame)

  • 김군홍;이정원;김용모;안국영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.111-120
    • /
    • 2006
  • The fully coupled conditional moment closure(CMC) model has been developed to realistically simulate the structure of complex turbulent nonpremixed syngas flame, in which the flame structure could be considerablyl influenced by the turbulence, transport history, and heat transfer as well. In order to correctly account for the transport effect, the CMC transport equations fully coupled with the flow and mixing fields are numerically solved. The present CMC approach has successfully demonstrated the capability to realistically predict the detailed structure and the overall combustion characteristics. The numerical results obtained in this study clearly reveal the importance of the convective and radiative heat transfer in the precise structure and NOx emission of the present confined combustor with a cooling wall.

  • PDF

부분밀폐공간내에서 화재로 야기되는 열 및 유동특성에 관한 연구 (A Study of Thermal and flow Characteristics Induced by Fire in a Partial Enclosure)

  • 박희용;한철희;박경우
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1288-1300
    • /
    • 1994
  • Mathematical modeling and numerical calculation on the flow and thermal characteristics induced by fire in a partial enclosure are performed. The solution procedures include the Shvab-Zeldovich approximation for the physical transport equations, low Reynolds number k-.epsilon. model for the turbulent fluid flow and Discrete Ordinate method(DOM) to calculate the radiative heat transfer. PMMA(Polymethylmethacrylate) is adopted as a solid fuel. Two different cases are considered : combustions with and without gas radiation occuring in a open cavity for variable pyrolyzing location of PMMA. When the fire source is located at the left-wall, the flow region of flame gas is limited at the left-wall and ceiling and recirculation region of inlet gas is formulated at neat the floor. In case of neglecting the radiative heat transfer, more large flame size and higher temperature is predicted. It is essential to consider the radiative heat transfer for analysis of fire phenomenon.

액체 연료 표면에서의 화염확장기구에 관한 실험적 연구 (An experimental Investigation on Flame spreading over liquid fuel surface)

  • 김한석
    • 한국화재소방학회논문지
    • /
    • 제7권1호
    • /
    • pp.5-10
    • /
    • 1993
  • Flame spreading over liquid fuel surface has been investigated using thermocouple and schlieren photograph. Without forced convection, it was clearly found that the flame spreading is mainly controlled by surface flow which is maybe generated by change of surface tension. Furthermore, the radiative heat transfer is dominant over a conductive heat transfer in kerosene. But the latter was found more influential than the former in diesel. Oscillation of flame spreading was found. It maybe cause of surface flow.

  • PDF

이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향 (The Effects of $CO_2$ on Heat Transfer from Hydrogen Oxygen-enriched Flame)

  • 이창엽;최준원;백승욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.261-266
    • /
    • 2003
  • An experimental study has been conducted to evaluate the effects of $CO_{2}$ on heat transfer from hydrogen oxygen-enriched flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which mounted on top of the furnace. Five composition conditions of oxidizer were chosen with replacing $N_{2}$ with $CO_{2}$. In a steady state, total and radiative heat flux rates from the flame to the wall of furnace has been measured using heat flux meters. Temperature distribution in furnace also has been checked. Increasing $CO_{2}$ ratio in the oxidizer, the dominant heat transfer mode was changed into convection from radiation. Temperature in the furnace decreased but total heat flux increased.

  • PDF

비회색 가스 복사를 고려한 층류대향류 부분예혼합 화염에서의 $CO_2$$H_2O$ 첨가에 따른 영향 연구 (Effects of $CO_2$ and $H_2O$ Additions on Partially Premixed Counterflow Flame by Considering Nongray Gas Radiation)

  • 조범진;김태국
    • 한국연소학회지
    • /
    • 제10권3호
    • /
    • pp.10-16
    • /
    • 2005
  • Detailed flame structures of the counterflow flames of $CH_4/Air$ formed with $CO_2$ and $H_2O$ addition are studied numerically. The detailed chemical reactions are modeled by using the OPPDIF and CHEMKIN-II code. Only the $CO_2$ and $H_2O$ are assumed to participate in radiative heat transfer while all other gases are assumed to be transparent. The discrete ordinates method(DOM) and the narrow band based WSGGM with a gray gas regrouping technique(WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counter flow flames. The results compared with the SNB model show that the WSGGM-RG is successful in modeling the counterflow flames with non-gray gas mixture. The numerical results show that the addition of $CO_2$ and $H_2O$ to the oxidant nozzle lowers the peak temperature and the NO concentration in flame.

  • PDF

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.

단일액적연소현상에서 비회색체복사에 관한 연구 (Investigation of a droplet combustion with nongray gas radiation effects)

  • 최창은;박재현;박승욱
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1363-1370
    • /
    • 1997
  • Single liquid droplet combustion processes including heating, evaporation, droplet burning and flame radiation were theoretically investigated by adopting nongray gas radiation model for the radiative transfer equation (RTE). n-Heptane was chosen as a fuel and the numerical results were compared with the experimental data available in the literature. The discrete ordinate method (DOM) was employed to solve the radiative transfer equation and the weighted sum of gray gases model (WSGGM) was applied to account for nongray effect by CO$_{2}$, and H$_{2}$0. Therefore, detailed effects by nongray gas and its comparison with the gray gas model could be figured out in the results. It is found that the radiative heat flux is higher when the nongray model is used, thereby reducing the maximum gas temperature and the flame thickness, but the total burning time increases due to the deceased conductive heat flux in nongray model. Consequently, a better agreement with experimental data could be obtained by using nongray model.