• Title/Summary/Keyword: Flame Interaction

Search Result 208, Processing Time 0.031 seconds

Effect of Chemical Interaction on Flame Extinction in Interacting H2-air and CO-air Premixed Flames (H2-공기와 CO-공기의 예혼합화염의 화염소화에 있어서 화학적 상호작용의 효과)

  • Jung, Seongwook;Park, Jeong;Kwon, Ohboong;Keel, Sangin;Yun, Jinhan
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.44-52
    • /
    • 2013
  • Important role of chemical interaction in flame extinction was numerically investigated in downstream interaction among lean(rich) and lean(rich) premixed as well as partially premixed $H_2$-air and CO-air flames. The strain rate varied from 30 to $5917s^{-1}$ until interacting flame could not be sustained anymore. Flame stability diagrams mapping lower and upper limit fuel concentrations for flame extinction as a function of strain rate are presented. Highly stretched interacting flames were survived only within two islands in the flame stability map where partially premixed mixture consisted of rich $H_2$-air flame, extremely lean CO-air flame, and a diffusion flame. Further increase in strain rate finally converges to two points. Appreciable amount of hydrogen in the side of lean $H_2$-air flame also oxidized the CO penetrated from CO-air flame, and this reduced flame speed of the $H_2$-air flame, leading to flame extinction. At extremely high strain rates, interacting flames were survived only by a partially premixed flame such that it consisted of a very rich $H_2$-air flame, an extremely lean CO-air flame, and a diffusion flame. In such a situation, both the weaker $H_2$-air and CO-air flames were parasite on the stronger diffusion flame such that it could lead to flame extinction in the situation of weakening the stronger diffusion flame. Particular concerns are focused on important role of chemical interaction in flame extinction was also discussed in detail.

A Numerical Study on the Lean-Rich Interaction of Methane/Air Flames (희박-과농 메탄 화염의 상호작용에 관한 수치해석적 연구)

  • Lee, Seung-Dong;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.377-383
    • /
    • 1996
  • Interaction of flames in a lean-rich concentration field is studied numerically adopting a counterflow as a model problem. Detailed kinetic mechanism is adopted in analyzing the structure of various type of flames which can be found in lean-rich interaction. Flow field is simplified to quasi one-dimensional by using boundary layer approximation and similarity formulation. Triple flames are identified and its structure shows that a diffusion flame is located in the middle of two premixed flames. Such a diffusion flame is formed by $H_2$ and CO generated from the rich premixed flame and $O_2$ leaked from the lean premixed flame. The flame position can be identified either from the hydrogen production rate or the heat release rate. Transition from single diffusion flame to triple flame is observed as degree of premixing is increased.

A study of Instability on Oscillating Laminar Premixed Flames (진동하는 층류예혼합화염의 불안정성에 관한 연구)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.8-15
    • /
    • 2008
  • When a circular cylinder is placed at the center of a slot burner nozzle, once stable Woflhard-Parker type laminar lean premixed flame is changed to an oscillating flame with self-induced noise. The wrinkled flame surface showed the same pattern and frequency of the Karman vortex street at the downstream of a circular cylinder. The interaction of flame with Karman vortex street is observed to be responsible for flame oscillation. The measured flame oscillation frequency is very similar to the estimated Karman vortex shedding frequency based on the St-Re relationship of the flow past circular cylinder, which could be considered as a strong evidence for the interaction between laminar pre-mixed flame and a Karman vortex street. As Reynolds number increases oscillation frequency decreases and the self-induced noise level increases as well as the flame front is more severly wrinkled. This result suggests that the flame/vortex interaction becomes more active at higher Re.

  • PDF

Effects of Preferential Diffusion on Downstream Interaction in Premixed $H_2$/CO Syngas-air Flames (상호작용하는 $H_2$-CO 예혼합 화염에서 $H_2$선호확산의 영향에 관한 수치적 연구)

  • Oh, Sanghoon;Park, Jeong;Kwon, Ohboong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.17-29
    • /
    • 2012
  • The effects of strain rate and preferential diffusion of $H_2$ on flame extinction are numerically studied in interacting premixed syngas-air flames with fuel compositions of 50% $H_2$ + 50% CO and 30% $H_2$ + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. $a_g=30s^{-1}$ and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of $H_2$ cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of $H_2$ and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.

Numerical Study of Interaction between Hydrogen and Hydrocarbon Flames (수소화염과 탄화수소화염의 상호작용에 관한 수치계산 연구)

  • Oh, Chang-Bo;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.12-17
    • /
    • 2010
  • Numerical simulations were performed for the prediction of the flame structure during the interaction between hydrogen and hydrocarbon flames. A counterflow flow geometry was introduced to establish the interacting two flames. Methane was used as a representative hydrocarbon fuel in this study. A well-known numerical code for the counterflow flame, OPPDIF, was used for the simulations. The detailed chemistry was adopted to predict the flame structure reasonably. The interaction of two one-dimensional premixed flames established in counterflow burner was investigated with the global strain rate and velocity ratio. It was found that the maximum temperature located near the methane flame surface while the heat release rate of methane was lower than hydrogen flame. The flame thickness become narrow with increasing the velocity ratio while the global strain rate was fixed. The local strain rate and heat release rate at the methane flame surface were correlated with the global strain rate, while those at the hydrogen flame were not correlated with the global strain rate. However, the maximum temperature of the interacting flames was correlated with the global strain rate.

Numerical Study on Non-premixed Methane Flames in Twin-jet Counterflow (Twin-jet 대향류에서 메탄 비예혼합화염에 대한 수치적 연구)

  • Chun, K.W.;Kim, J.H.;Chung, C.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.49-56
    • /
    • 2004
  • A two-dimensional twin-jet counterflow system has been designed, in which two streams from two double-slit nozzles form a counterflow. This flow system enables one to systematically investigate various effects on non-premixed flames, including the non-premixed flame interaction, the edge flame behavior and the effect of curvature. Non-premixed flame interaction in the twin-jet counterflow system has been investigated numerically for methane fuel diluted with nitrogen. Three types of non-premixed flame(conventional counterflow flame, crossed twin-jet flame and petal shaped flame) were simulated depending on the combination of fuel/oxidizer supply to each nozzle. The extinction characteristics of non premixed methane flame in the twin-jet counterflow have been investigated numerically. The boundary of the existence of petal-shaped flames was identified for the twin-jet counterflow flames. Due to the existence of the unique petal-shaped flames, the extinction boundary for the twin-jet counterflow can be extended significantly compared to that for the conventional counterflow non-premixed flames, through the interaction of two flames. Through the comparison of the crossed twin-jet flame and the conventional counterflow flame, structure of the crossed twin-jet counterflow flame is analysed. Through the comparison of the petal shaped flame and the conventional counterflow flame, the extension of the extinction boundary for the twin-jet counterflow is investigated.

  • PDF

Concentration Interaction of Premixed and Triple-layer Flames in Lean Burn with Methane Fuel (희박연소에서 발생하는 메탄의 농도 상호작용과 삼중화염에 대한 연구)

  • Oh, Tae-Kyun;Chung, Suk-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2006
  • The performance in the practical combustion system including reciprocating engines and gas turbine combustors is being much governed by turbulent reacting flow that is often analyzed by both a laminar flamelets concept and flame interaction. The characteristics of laminar flame interaction have been investigated numerically to provide basic understanding of wrinkled turbulent flames under concentration interaction resulting from inhomogeneity in fuel-air mixing, especially focused on the transition of flame characteristics such as diffusion flame, partially premixed diffusion flame, and triple-layer flame by the variation in the degree of premixedness. The extinction stretch rates to the premixedness have also been obtained in this paper. The boundary defining the regime of the existence of triple-layer flames as functions of both stretch rate and premixedness has been determined which agrees well with previously reported experiment measuring OH radical concentration peaks based on PLIF.

Flame-Vortex Interaction and Mixing in Turbulent Hydrogen Diffusion Flames with Coaxial Air (동축공기 수소확산화염에서 화염-와류 상호작용 및 혼합)

  • Kim, Mun-Ki;Oh, Jeong-Seog;Choi, Young-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.149-154
    • /
    • 2007
  • This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen nonpremixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NOx emissions. Acoustic excitation causes the flame length to decrease by 15 % and consequently, a 25 % reduction in EINOx is achieved, compared to a flame without acoustic excitation. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NOx emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface.

  • PDF

Numerical Simulation of Unsteady $CH_4$/Air Jet Diffusion Flame (비정상 $CH_4$/공기 제트 확산화염에 관한 수치모사)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.113-122
    • /
    • 2000
  • Dynamic structures of unsteady $CH_4$/Air jet diffusion flames with flame-vortex interaction were numerically investigated. A time-dependent, axisymmetric computational model was adopted for this calculation. Two step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including gravitational effect show that the large outer vortices and the small inner vortex street can be well simulated without any additional disturbances in the downstream of nozzle tip. It was found that the temperature and species concentrations had various values for the same mixture fraction in flame-vortex interaction region. This unsteady jet flame configuration accompanying flame-vortex interaction is expected to give good implications for the structure of turbulent flames.

  • PDF

Numerical Simulation of Unsteady CH$_4$/Air Jet Diffusion Flame (비정상 CH$_4$/공기 제트 확산화염에 관한 수치모사)

  • Lee, Chang-Eon;O, Chang-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1087-1096
    • /
    • 2001
  • The dynamic structures of unsteady CH$_4$/Air jet diffusion flame with a flame-vortex interaction were numerically investigated. A timed-dependent, axisymmetric computational model and a low mach number approximation were employed in the present calculation. A two-step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including the gravitational effect show that the large outer vortices and the small inner vortices can be well simulated without any additional disturbances near nozzle tip. It was found that the temperature and species concentrations have deviated values even for the same mixture fraction in the flame-vortex interaction region. It was also shown that the flame surface is not deformed by the inner vortex in upstream region, while in downstream region, the flame surface is compressed or stretched by the outer vortex roll-up. The present unsteady jet flame configuration accompanying a flame-vortex interaction is expected to give good implications for the unsteady structures of turbulent flames.