• Title/Summary/Keyword: Flame Hole

Search Result 64, Processing Time 0.015 seconds

Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer (난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.102-111
    • /
    • 2004
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics to develope a prediction model for the turbulent lift off. The present study is specifically aimed to remedy the problem of the stiff transition of the conditioned partial burning probability across the crossover condition by adopting level-set method which describes propagating or retreating flame front with specified propagation speed. In light of the level-set simulations with two model problems for the propagation speed, the stabilizing conditions for a turbulent lifted flame are suggested. The flame hole dynamics combined with level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping. The probability to encounter reacting' state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate in contrast to the stiff transition of resulted from the flame-hole random walk mapping and could be attributed to the finite response of the flame edge propagation.

  • PDF

Flame Hole Dynamics Model of a Diffusion Flame in Mixing Layer (혼합층에서의 확산화염에 대한 flame hole dynamics 모델)

  • Kim, Jun-Hong;Chung, S.H.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.223-227
    • /
    • 2003
  • The method of flame hole dynamics is demonstrated as a mean to simulate turbulent flame extinction. The core of the flame hole dynamics involves derivation of a random walk mapping for the flame holes, created by local quenching, between the burning and quenched states provided that the dynamic characteristics of flame edges is known. Then, the random walk mapping is projected to a background turbulent field. The numerical simulations are carried out with the further simplifications of flame string and unconditioned scalar dissipation rate. The simulation results show how the chance of partial quenching is influenced by the crossover scalar dissipation rate. Finally, a list of improvements, necessary to achieve more realistic turbulent flame quenching simulation, are discussed.

  • PDF

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염의 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.18-29
    • /
    • 2004
  • Partial quenching structure of diffusion flames in a turbulent mixing layer has been investigated by the method of flame hole dynamics in oder to develope a prediction model for the phenomenon of turbulent flame lift off. The present study is specifically aimed to remedy the shortcoming of the stiff transition of the conditioned partial burning probability across the crossover condition by employing the level-set method which enables us to include the effect of finite flame edge propagation speed. In light of the level-set simulation results with two models for the edge propagation speed, the stabilizing conditions for turbulent lifted flame are suggested. The flame hole dynamics combined with the level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping based on three critical scalar dissipation rates. The probability to encounter reacting state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate. Such a smooth transition is attributed to the finite response of the flame edge propagation.

  • PDF

A Study on Transition of Shrinking Flame Disk to Flame Hole at Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 소화하는 화염디스크로부터 화염구멍으로 천이에 관한 연구)

  • Park, Dea-Geun;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.16-25
    • /
    • 2008
  • Experiments have been conducted to clarify impacts of curtain flow and velocity ratio on low strain rate flame extinction, and to further display transition of shrinking flame disk to flame-hole. Critical mole fractions at flame extinction are examined in terms of velocity ratio, global strain rate, and nitrogen curtain flow rate. It is shown that multi-dimensional effects at low strain rate flames through global strain rate, velocity ratio, and curtain flowrate dominantly contribute to flame extinction and transition of shrinking flame disk to flame hole. Our concerns are particularly focused on the dynamic behavior of an edge flame in shrinking flame disk.

  • PDF

Application of the Flame Hole Dynamics to a Diffusion Flame in Channel Flow

  • Lee, Su-Ryong;Yang Na;Kim, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1775-1783
    • /
    • 2003
  • The method of flame hole dynamics is demonstrated as a mean to simulate turbulent flame extinction. The core of the flame hole dynamics involves derivation of a random walk mapping for the flame holes, created by local quenching, between burning and quenched states provided that the dynamic characteristics of flame edges is known. Then, the random walk mapping is projected to a background turbulent field. The numerical simulations are carried out with further simplifications of flame string and unconditioned scalar dissipation rate. The simulation results show how the chance of partial quenching is influenced by the crossover scalar dissipation rate. Finally, a list of improvements, necessary to achieve more realistic turbulent flame quenching simulation, are discussed.

A Study on the Combustion Characteristics of Spark Plug with Pre-ignition Chamber (예연소실을 갖는 점화플러그의 연소 특성에 관한 연구)

  • Jie, Myoung-Seok;Kim, Jin-Hyuck;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.718-723
    • /
    • 2007
  • The new concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber in the lower end of spark plug and flame hole, in which fresh mixture gas can be introduced without any fuel supply system. This spark plug was tested with a commercial SI engine. Fuel consumption rate, emission gas and MBT timing were measured in the engine dynamometer for various flame hole numbers, hole positions, hole sizes of the pre-ignition chamber of the spark plug. And average flame propagation speed was measured by using the head gasket ionization probe in single cylinder engine. The new concept spark plug induces fast bum in combustion compared with the conventional spark plug, and MBT(Minimum advance for Best Torque) timing was retarded about $3{\sim}5^{\circ}$ crank angle. The flame hole number, hole direction and volume of pre-ignition chamber were found to influence the combustion characteristics.

A Study on the Mixing Capacity of Lifted Flame by the Nozzle Hole-tone of High Frequency in Non-premixed Jet Flames (비예혼합 제트화염에서 고주파수의 노즐 구멍음에 의한 부상화염 혼합성능에 관한 연구)

  • Jo, Joon-Ik;Lee, Kee-Man
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental investigation of the characteristic of non-premixed lifted flames with nozzle hole-tone of high-frequency has been performed. Before the fuel was supplied to nozzle, the fuel was supplied through a burner cavity which was located under the nozzle. The fuel passed through the excitation cavity under the influence of the high-frequency affects the lifted flame characteristics. The measurements were performed in flow range that occurs lifted flame and blow out. When the high-frequency is generated from burner cavity, the lifted length became shorter, and noise reduced comparing to unexcitation case. Additionally, operating flow range was increased and diameter of flame base became smaller with high-frequency effect. Through this experiments, it's ascertained that the high-frequency excitation can be adopted with effective method for flame stability and noise reduction.

Edge Flame : Why Is It So Hot in Combustion?

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.19-27
    • /
    • 2000
  • A turbulent combustion model, based on edge flame dynamics, is discussed in order to predict global extinction of turbulent flames. The model is applicable to the broken flamelet regime of turbulent combustion, in which global extinction of turbulent flame is achieved by gradual expansion of flame holes. The edge flame dynamics is the key mechanism to describe the flame hole expansion or contraction. For flames with Lewis numbers near unity, there is a $Damk{\ddot{o}}hler$ number, namely the crossover $Damk{\ddot{o}}hler$ number, at which edge flame changes its direction of propagation. The parametric region between the quasi-steady extinction condition and the edge-flame crossover condition is a metastable region, in that flames without edge can stay in their burning states while flames with edge have to retract to expand quenching holes. Using the above properties of edge flame, Hartley and Dold proposed a Lagrangian hole dynamics, which allows us to simulate transient variation of quenching holes. In their model, each stoichiometric surface is subjected to a random sequence of scalar dissipation rate compatible to the equilibrium turbulence. Then, each stoichiometric surface will evolve, according to the combustion map, dependent on the scalar dissipation rate and existence of flame edge, If all the burning surfaces are annihilated, the event can be declared as a global extinction. The consequence obtained from the above model also can be used as a subgrid model to determine local extinction occurring in a calculation grid.

  • PDF

Flame Visualization and Flame Characteristics of Spark Plug with Pre-ignition Chamber (예연소실 점화플러그의 화염가시화와 화염전파특성)

  • Jie, Myoung Seok;Johng, In Tae
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • New concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber at the lower end of spark plug and flame hole, in which fresh mixture gas can be put in through the flame hole without any fuel supply system. This spark plug was tested in a single cylinder engine dynamometer for different air fuel ratio to measure the fuel consumption rate, emission gases, and MBT timing. And constant volume combustion chamber was made to understand flame characteristics of spark plug. New spark plug induced fast burn compared to the conventional spark plug and its effects were increased in lean air fuel ratio. Pre-ignition chamber spark plug with 5 holes which had adjusted size was more stable and effective in combustion performance than pre-ignition chamber spark plug with 1 hole. And its effects showed larger differences in lean air fuel ratio than stoichiometric condition. Flame kernel and flame growth process of conventional spark plug and pre-ignition chamber spark plug studied by flame visualization of schlieren method.