• Title/Summary/Keyword: Fixed-wing Aircraft

Search Result 97, Processing Time 0.022 seconds

A Study on the Possibility of Using the Aerial-Based Vehicle Detection System for Real-Time Traffic Data Collection (항공 기반 차량검지시스템의 실시간 교통자료 수집에의 활용 가능성에 관한 연구)

  • Baik, Nam Cheol;Lee, Sang Hyup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.129-136
    • /
    • 2012
  • In the US, Japan and Germany the Aerial-Based Vehicle Detection System, which collects real-time traffic data using the Unmanned Aerial Vehicle (UAV), helicopters or fixed-wing aircraft has been developed for the last several years. Therefore, this study was done to find out whether the Aerial-Based Vehicle Detection System could be used for real-time traffic data collection. For this purpose the study was divided into two parts. In the first part the possibility of retrieving real-time traffic data such as travel speed from the aerial photographic image using the image processing technique was examined. In the second part the quality of the retrieved real-time traffic data was examined to find out whether the data are good enough to be used as traffic information source. Based on the results of examinations we could conclude that it would not be easy for the Aerial- Based Vehicle Detection System to replace the present Vehicle Detection System due to technological difficulties and high cost. However, the system could be effectively used to make the emergency traffic management plan in case of incidents such as abrupt heavy rain, heavy snow, multiple pile-up, etc.

The Push Framework for UMPC Tactical Data Link(TDL) Based on The Legacy Radio (레거시 라디오 기반의 UMPC 전술 데이터 링크 Push 프레임워크)

  • Sim, Dong-Sub;Shin, Ung-Hee;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.397-404
    • /
    • 2010
  • Recently, there is on-going research about tactical data link system based on the legacy radio. Tactical data link based on legacy radio is operated mostly in narrow bandwidth under 25khz. Communicating traffics in nodes participated at network need to be minimized for distributing tactical data in narrow bandwidth. In addition, the data distributing structure is necessary for distributing tactical informations such as a situation awareness and so on to war fighters. However, conventional server-client system wastes a lot of time to obtain information for war fighters as user uses pull system to gather necessary information by seeking it one by one. Especially, the fighter pilot is supposed to dedicate into a situation awareness and fight mission in every seconds but seeking information of a user terminal while aircraft maneuvering affects as obstacle to concentrate engaging hostiles. therefore, push technology, the tactical data distributing system, is necessary for war fighters to receive fixed tactical data automatically without putting attention to it. This paper propose the UMPC tactical data link push framework. the UMPC tactical data link is a tactical data link system based on the legacy radio. Proposed push framework is verified by composing experiment environment and testing.

Development of Simulation Environment for Proximity Flight Using Simulink and X-Plane (Simulink와 X-Plane을 이용한 모의 근접비행 시뮬레이션 환경 개발연구)

  • Lee, Sanghoon;Park, Chanhwi;Park, Younghoo;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.465-472
    • /
    • 2021
  • Prior to the actual flight test of the separation-reintegration situation of fixed-wing mother and child UAVs in the air, it is necessary to verify the flight control system of child UAV through simulations. In this paper, we build a simulation environment for the development of a child UAV flight control system in a lab environment based on the wake turbulence of X-Plane. To this end, the aerodynamics analysis of child UAV was performed, and Simulink was used to simulate aircraft, and X-Plane was utilized to implement visualization, wind, gusts, and mother UAV movements. The simulation environment built by performing simulated proximity flights was verified by applying the guidance and control algorithm to the child UAV model within Simulink. Furthermore, the flight results confirm the area in which the child UAV can safely fly from the rear of the mother UAV.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (2) - Flight Control and Guidance of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (2) - 태양광 무인기 비행제어 및 유도항법 -)

  • Kim, Taerim;Kim, Doyoung;Jeong, Jaebaek;Moon, Seokmin;Kim, Yongrae;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.479-487
    • /
    • 2022
  • This paper presents the control and guidance algorithm of a KAU-SPUAV(Korea Aerospace University - Solar Powered Unmanned Aerial Vehicle) which is designed and developed in Korea Aerospace University. Aerodynamic coefficients are calculated using the vortex-lattice method and applied to the aircraft's six degrees of freedom equation. In addition, the thrust and torque coefficients of the propeller are calculated using the blade element theory. An altitude controller using thrust was used for longitudinal control of KAU-SPUAV to glide efficiently when it comes across the upwind. Also describes wind estimation technic for considering wind effect during flight. Finally, introduce some guidance laws for endurance, mission and coping with strong headwinds and autonomous landing.

Improvement of Ortho Image Quality by Unmanned Aerial Vehicle (UAV에 의한 정사영상의 품질 개선 방안)

  • Um, Dae-Yong;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.568-573
    • /
    • 2018
  • UAV(Unmanned Aerial Vehicle) is widely used in space information construction, agriculture, fisheries, weather observation, communication, and entertainment fields because they are cheaper and easier to operate than manned aircraft. In particular, UAV have attracted much attention due to the speed and cost of data acquisition in the field of spatial information construction. However, ortho image images produced using UAVs are distorted in buildings and forests. It is necessary to solve these problems in order to utilize the geospatial information field. In this study, fixed wing, rotary wing, vertical take off and landing type UAV were used to detect distortions of ortho image of UAV under various conditions, and various object areas such as construction site, urban area, and forest area were captured and analysed. Through the research, it was found that the redundancy of the unmanned aerial vehicle image is the biggest factor of the distortion phenomenon, and the higher the flight altitude, the less the distortion phenomenon. We also proposed a method to reduce distortion of orthoimage by lowering the resolution of original image using DTM (Digital Terrain Model) to improve distortion. Future high-quality unmanned aerial vehicles without distortions will contribute greatly to the application of UAV in the field of precision surveying.

Verification of Entertainment Utilization of UAS FC Data Using Machine Learning (머신러닝 기법을 이용한 무인항공기의 FC 데이터의 엔터테인먼트 드론 활용 검증)

  • Lee, Jae-Yong;Lee, Kwang-Jae
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.349-357
    • /
    • 2021
  • Recently, drones are rapidly becoming common and expanding. There is a great need for diversity in whether drone flight data can be used as entertainment technology analysis data. In particular, it is necessary to check whether it is possible to analyze and utilize the flight and operation process of entertainment drones, which are developing through autonomous and intelligent methods, through data analysis and machine learning. In this paper, it was confirmed whether it can be used as a machine learning technology by using FC data in the evaluation of drones for entertainment. As a result, FC data from DJI and Parrot such as Mavic2 and Anafi were unable to analyze machine learning for entertainment. It is because data is collected at intervals of 0.1 second or more, so that it is impossible to find correlation with other data with GCS. On the other hand, it was found that machine learning technologies can be applied in the case of Fixhawk, which used an ARM processor and operates with the Nuttx OS. In the future, it is necessary to develop technologies capable of analyzing the characteristics of entertainment by dividing fixed-wing and rotary-wing flight information. For this, a model shoud be developed, and systematic big data collection and research should be conducted.

Test development of a UAV equipped with a Fly-By-Wireless flight control system (무선네트워크 비행제어시스템을 탑재한 무인항공기의 시험개발)

  • Oh, Hyung Suk;Kim, Byung Wook;Lee, Si Hun;Nho, Won Ho;Kang, Seung Eun;Ko, Sang Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1039-1047
    • /
    • 2017
  • This paper presents a test development of a Fly-By-Wireless flight control system for a fixed-wing unmanned aerial vehicle (UAV). Fly-By-Wireless system (FBWLS) refers to a system that uses a wireless network instead of a wired network to connect sensors and actuators with a flight control computer (FCC), reducing considerable amount of wires. FBWLS enables to design a much lighter aircraft along with decreased maintenance time and cost. In this research we developed a Zigbee-based FWBLS UAV in which sensors (GPS and AHRS) are wirelessly connected via a FCC to aileron and elevator servo motors. In order to see the effect of time delay due to wireless signal on the flight stability of the UAV, several flight tests were conducted. From the tests, it was confirmed that the effect is minor by comparing the flight response of the FBWLS with the corresponding Fly-By-Wire system.