• Title/Summary/Keyword: Fixed-bed reactor

Search Result 245, Processing Time 0.022 seconds

Effect of La Promoter in the Production of Synthesis Gas over Supported Ni Catalysts (니켈담지촉매에서 합성가스 제조시 La 조촉매의 영향)

  • Hwang, Jae-Young;Kim, Young-Kook;Lim, Yun-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.89-96
    • /
    • 2004
  • The effect of La promoter on the carbon deposition and catalytic activity in the synthesis gas production with supported Ni catalysts was investigated. Active component was Ni and support was $CeO_2$ and the promoter used was La. The reaction was carried out in a fixed bed reactor at 1 atm and $650{\sim}800^{\circ}C$. The catalysts were prepared by two methods, the impregnation method and urea method. The catalysts prepared by the urea method showed 10 times higher surface area than those of prepared by the impregnation method. By the introduction of La promoter in the catalyst system, carbon deposition was remarkably reduced from 16% to 2%. It appears that the promoter facilitates the formation of a stable fluoride-type phase, which reduces the carbon deposition. The best catalytic activity and CO and $H_2$ selectivities were obtained with 2.5wt% $Ni/Ce(La)O_x$ catalyst at $750^{\circ}C$, giving 90% methane conversion, 93 and.80% of CO and $H_2$ selectivities, respectively.

A Study on the Thermal Decomposition Characteristics of Waste PVC Wire Added with CaO (CaO를 첨가한 폐PVC전선의 열적분해 특성에 관한 연구)

  • Shah, Malesh;Park, Ho;Kwon, Woo-Teck;Lee, Hae-Pyeong;Oh, Sea-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.268-277
    • /
    • 2012
  • The thermal decomposition characteristic of waste PVC wires has been studied by using TGA and fixed-bed reactor. The experimental conditions of decomposition temperatures, air flow rates and weight ratio of CaO/PVC were considered in this work. To verify the effectiveness of CaO addition to remove HCl and toxic gases generated from thermal decomposition of PVC wire, the gaseous products obtained from the thermal decomposition of PVC were analyzed by GC/MS(Gas Chromatograph and Mass Spectrometry). To investigate the effect of CaO in thermal decomposition of PVC, liquid products were also analyzed by GC/MS. And the effect of decomposition temperature, air flow rate and CaO/ PVC weight ratio on the yield of liquid, gas and residue fraction have been also studied. From this work, it was found that the removal amount of HCl generated from thermal decomposition of PVC increased with increase of CaO addition.

Characteristics of SrCo1-xFexO3-δ Perovskite Powders with Improved O2/CO2 Production Performance for Oxyfuel Combustion

  • Shen, Qiuwan;Zheng, Ying;Luo, Cong;Zheng, Chuguang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1613-1618
    • /
    • 2014
  • Perovskite-type oxides are promising oxygen carriers in producing oxygen-enriched $CO_2$ gas stream for oxyfuel combustion. In this study, a new series of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ (x = 0.2, 0.4, 0.6, 0.8) was prepared and used to produce $O_2/CO_2$ mixture gas. The phase, crystal structure, and morphological properties of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ were investigated through X-ray diffraction, specific surface area measurements, and environmental scanning electron microscopy. The oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ was studied in a fixed-bed reactor system. Results showed that the different x values of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ have no obvious effects on crystalline structure. However, the oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ is improved by Co doping. Moreover, $SrCo_{0.8}Fe_{0.2}O_{3-{\delta}}$ synthesized via a new EDTA method has a larger BET surface area ($40.396m^2/g$), smaller particle size (48.3 nm), and better oxygen production performance compared with that synthesized through a liquid citrate method.

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

The Study on DME (dimethyl ether) Conversion Over the Supported SAPO-34 Catalyst (담지된 SAPO-34 촉매상에서 DME(dimethyl ether) 전환 연구)

  • Lee, Su-Gyung;Yoo, Byoung-Kwan;Je, Han-Sol;Ryu, Tae-Gong;Park, Chu-Sik;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.232-239
    • /
    • 2011
  • DME has received much attention because of its possible use as a fuel and a chemical feedstock. Chemical conversion of DME to olefin (DTO) over various SAPO-34 catalysts was carried out using a fixed bed reactor. Main products of the reaction were light olefins such as ethylene, propylene and butenes. The best reaction conditions for high life time of the catalyst and high selectivity of light olefins were a reaction temperature of $400^{\circ}C$ and a WHSV of $3.54h^{-1}$. In addition, it was found that the deactivation of a SAPO-34 catalyst can be significantly suppressed by the addition of $ZrO_2$ as a supporter.

Effect of Si/Al2 Ratio on 2-butanol Dehydration over HY Zeolite Catalysts (HY zeolite 촉매 상에서 Si/Al2 비가 2-Butanol 탈수반응에 미치는 영향)

  • Jung, Euna;Choi, Hyeonhee;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.116-120
    • /
    • 2015
  • Synthesis of butenes through dehydration of 2-butanol was investigated over HY zeolite catalysts. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. 2-Butanol conversion was increased with increase of $Si/Al_2$ ratio of HY zeolite catalysts, which can be ascribed to increase of acid strength with increase of $Si/Al_2$ ratio. Selectivities to 1-butene, trans-2-butene, and cis-2-butene were not greatly influenced by the change of the $Si/Al_2$ ratio of HY zeolite. As a result, it was advantageous to use a HY zeolite catalyst with 60 $Si/Al_2$ ratio for maximizing the yield of 1-butene in the dehydration of 2-butanol. The optimal reaction temperature for maximizing the yield of 1-butene was $250^{\circ}C$ over HY (60) catalyst.

Transmethylation of Methylnaphthalene Over Beta, USY and Mordenite Zeolite Catalysts (제올라이트 Beta, USY, Mordenite 촉매를 이용한 Methylnaphthalene의 트랜스메틸화 반응)

  • Park, Jung-Nam;Park, Yong-Ki;Baeg, Jin-Ook;Hong, Suk-In;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.560-565
    • /
    • 2005
  • Catalytic performances of zeolite catalysts such as H-mordenite(HM), H-Beta$(H{\beta})$, H-USY(HUSY) for the transmethylation between 1-methylnaphthalene(1-MN) and 2-methylnaphthalene(2-MN) were investigated in a fixed-bed flow reactor. $H{\beta}$ showed higher and more stable conversion than others to exhibit a high and stable 2-MN/1-MN ratio of 2.3 and 2,6-DMN/2,7-DMN ratio of 1.3 at the $1^{st}$ hour of time on stream under the reaction conditions as follows: reaction temperature of $350^{\circ}C$, reaction pressure of 1.5 MPa, WHSV of $2.7g_{feed}/g_{cat}{\cdot}h$ and the molar ratio of 1-MN and 2-MN of 1:1. The catalytic behavior has been discussed in relation with the catalyst pore structure and acidity.

Charateristics of Hydrogen Iodide Decomposition using Ni-Pt Bimetallic Catalyst in Sulfur-Iodine Process (황-요오드 열화학 수소 생산 공정에서 니켈-백금 이원금속 촉매를 이용한 요오드화수소 분해 특성)

  • Kim, Soo-Young;Go, Yoon-Ki;Park, Chu-Sik;Bae, Ki-Kwang;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This study was performed to develop a low Pt content catalyst as a catalyst for HI decomposition in S-I process. Bimetallic catalysts added various amounts of Pt on a silica supported Ni catalyst were prepared by impregnation method. HI decomposition was carried out using a fixed bed reactor. As a result, Ni-Pt bimetallic catalyst showed enhanced catalytic activity compared with each monometallic catalyst. Deactivation of Ni-Pt catalyst was not observed while deactivation of Ni monometallic catalyst was rapidly occurred in HI decomposition. The HI conversion of Ni-Pt bimetallic catalyst was increased similar to Pt catalyst with increase of the reaction temperature over a temperature range 573K to 773K. From the TG analysis, it was shown that $NiI_2$ remained on the Ni(5.0)-Pt(0.5)/$SiO_2$ catalyst after the HI decomposition reaction was decomposed below 700K. It seems that small amount of Pt in bimetallic catalyst increase the decomposition of $NiI_2$ generated after the decomposition of HI. Consequently, it was considered that the activity of Ni-Pt bimetallic catalyst was kept during the HI decomposition reaction.

Characteristics of Pt/C-based Catalysts for HI Decomposition in SI process (SI 공정에서 HI 분해를 위한 백금담지 활성탄 촉매의 특성)

  • Kim, J.M.;Kim, Y.H.;Kang, K.S.;Kim, C.H.;Park, C.S.;Bae, K.K.
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.3
    • /
    • pp.199-208
    • /
    • 2008
  • HI decomposition was conducted using Pt/C-based catalysts with a fixed-bed reactor in the range of 573 K to 773 K. To examine the change of the characteristic properties of the catalysts, $N_2$ adsorption analyser, a X-ray diffractometer(XRD), and a scanning electron microscopy(SEM) were used before and after the HI decomposition reaction. the effect of Pt loading on HI decomposition was investigated by $CO_2$-TPD. HI conversion of all catalysts increased as decomposition temperature increased. The XRD analysis showed that the sizes of platinum particle became larger and agglomerated into a lump during the reaction. From $CO_2$-TPD, it can be concluded that the cause for the increase in catalytic activity may be attributed to the basic sites of catalyst surface. The results of both b desorption and gasification reaction showed the restriction on the use of Pt/C-based catalyst.

Benzene Oxidation Characteristics of Cu/γ - Al2O3 Catalyst (Cu/γ - Al2O3 촉매를 적용한 벤젠산화반응특성)

  • Choi, Ook;Kyung, Dae-Hyun;Park, Yeong-Seong
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.256-262
    • /
    • 2014
  • Catalytic oxidation characteristics of benzene as a VOC was investigated in a fixed bed flow reactor using $Cu/{\gamma}-Al_2O_3$ catalyst. The parametric tests were conducted at the reaction temperature range of $200{\sim}500^{\circ}C$, benzene concentration of 400~650 ppm, gas flow rate of 50~100 cc/min, and space velocity range of $7,500{\sim}22,500hr^{-1}$. The property analyses by using the BET, SEM, TGA and the conversion of catalytic oxidation of benzene were examined. The experimental results showed that the conversion was increased with decreasing benzene concentration, gas flow rate and space velocity. Benzene oxidation reaction over $Cu/{\gamma}-Al_2O_3$ catalyst could be expressed as the first order homogeneous reaction of which the activation energy was 17.2 kcal/mol and frequency factor was $1.33{\times}10^6sec^{-1}$.