• Title/Summary/Keyword: Fixed temperature heat detector

Search Result 9, Processing Time 0.025 seconds

DB Construction of Activation Temperature and Response Time Index for Domestic Fixed-temperature Heat Detectors in Ceiling Jet Flow (천장제트기류에 대한 국내 정온식 열감지기의 작동온도 및 반응시간지수(RTI)에 관한 DB 구축)

  • Yoon, Ga-Yeong;Han, Ho-Sik;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.35-42
    • /
    • 2020
  • The accurate prediction of fire detector activation time is required to ensure the reliability of fire modeling during the safety assessment of performance-based fire safety design. The main objective of this study is to determine the activation temperature and the response time index (RTI) of a fixed heat detector, which are the main input factors of a fixed-temperature heat detector applied to the fire dynamics simulator (FDS), a typical fire model. Therefore, a fire detector evaluator, which is a fire detector experimental apparatus, was applied, and 10 types of domestic fixed-temperature heat detectors were selected through a product recognition survey. It was found that there were significant differences in the activation temperature and RTI among the detectors. Additionally, the detector activation time of the FDS with the measured DB can be predicted more accurately. Finally, the DB of the activation temperature and RTI of the fixed-temperature heat detectors with reliability was provided.

Response Time Index and Operation Time of Fixed Temperature Heat Detector (정온식 열감지기의 응답시간지수 및 작동시간)

  • 류호철;태순호;이병곤
    • Fire Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 1993
  • Fixed temperature heat detectors that respond to the heat generated in fire plume and alarm when the temperature reaches a specified point, give a great influences to the loss of life and property according to their reaction sensitivity. In this study, hot wind tunnel tests and compartment fire experiments were performed to investigate the response time and temperature of fixed temperature heat detector. As a result, simple equations were derived which can be predicted the response time and temperature of the fixed temperature heat detector for the ramp type fire. Also other useful data, such as the effective temperature, time constant, response time index(RTI) were obtained.

  • PDF

An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses (랙크식 물류창고 조기 화재감지를 위한 최적 화재감지기 설치방법에 관한 실험연구)

  • Choi, Ki Ok;Kim, Dong Suck;Hong, Sung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.38-45
    • /
    • 2017
  • This paper is an experimental study to find an optimal detection method for detecting fire early in a rack-type warehouse stored with goods. In this study, we constructed rack-type structure with the fourth floor of 13.5 m high and conducted fire experiments which were to measure flow of heat/smoke in rack-type structure and response time of fire detectors. The detectors used at experiments were fixed temperature type detectors, rate of rise detectors, photoelectric smoke detectors, air sampling smoke detectors and flame detectors. The used ignition sources are n-heptane fire for response of heat detection and cotton fire for response of smoke detection. The fixed temperature type detectors, rate of rise detectors and photoelectric detectors were installed to every rack level respectively. The results show that the rate of rise detector should be installed every 2 levels and photoelectric smoke detector should be installed every 4 levels for the early stage fire detection. Air sampling smoke detectors can detect fire early in response to control of sensitivity, but there is a problem in false alarm. The fixed temperature detector is not suitable for early stage fire detection in warehouse and flame detector not worked if flame is not visible, so it need to install combination with other detector.

Measurement of the Device Properties of Fixed Temperature Heat Detectors for the Fire Modeling (화재모델링을 위한 정온식 열감지기의 장치물성 측정)

  • Park, Hee-Won;Cho, Jae-Ho;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of Performance-Based fire safety Design (PBD). The main objective of the present study is to measure input information in order to predictive the accurate activation time of fixed temperature heat detectors adopted in Fire Dynamics Simulator (FDS) as a representative fire model. To end this, Fire Detector Evaluator (FDE) which could be measured the device properties of detector was used, and the spot-type fixed temperature heat detectors of two thermistor types and one bimetal type were considered as research objectors. Activation temperature and Response Time Index (RTI) of detectors required for the fire modeling were measured, and then the RTI was measured for ceiling jet flow and vertical jet flow in consideration of the install location of detectors. The results of fire modeling using measured device properties were compared and validated with the experimental results of full-scale compartment fires. It was confirmed that, in result, the numerically predicted activation time of detector showed reasonable agreement with the measured activation time.

A Study on the Response Characteristics of Fire Detector by Full-scale Experiment of Fire Phenomena in the Row House (주택 실물화재실험에 의한 화재감지기 응답특성에 관한 연구)

  • SaKong, Seong-Ho;Kim, Shi-Kuk;Lee, Chun-Ha;Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.67-72
    • /
    • 2009
  • This paper is for response feature of fire detectors not only to analysis response feature of fire detector, but also to observe flame spread of inside-building and fire enlargement by using the row house which is supposed to be broken up. Many kinds of popular detectors such as heat type detector(differential type, fixed temperature type, Analogue type)and smoke type(light scattered type, Analogue type, single alarm type) were installed in the house in order to check for the change of temperature by installing of thermocouples. As a result, smoke detectors are better than heat detectors when it comes to making effective fire-detect system in the row house.

A Study on the Development of the Single Station Fixed Temperature Detector of Low Power Consumption for Residential Fire Prevention (주택화재 예방을 위한 저소비 전력형 단독경보형 정온식감지기 개발에 관한 연구)

  • Park, Se-Hwa;Cho, Jae-Cheol
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.61-68
    • /
    • 2010
  • In this paper, a research and development result for the implementation of single station fixed temperature detector for residential fire prevention is described. The detector was developed for the certification in Japanese market because of very low domestic market situation. It is in the situation that there is no other regulation especially for residential detectors in Korea, Japanese case has been reviewed. Investigation of domestic legal circumstances and a comparative study for the test standard owned by KFI (Korea Institute of Fire Industry & Technology) and JFEII (Japan Fire Equipment Inspection Institute) respectively are also indicated. The detector alarms with a buzzer and an indicating LED. In the implementation ultra low power MCU(Micro Controller Unit) is applied to control the sleeping state and the monitoring state properly with low current consumption. To sense the temperature fast response thermistor is adopted in the design of fixed temperature residential detector. Automatic test function and alarm stop function are also considered in the design. The major factors which influence to current consumption are explained for the purpose of design reference. Main electronics circuit parts related to it's characteristics of the detector are described. It is explained that the measured current and experimental result of the battery discharge can be met over 10 years operation.

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Improvement of Fire Detection in Rack-type Warehouses using FDS (FDS를 이용한 랙크식 창고의 화재감지 개선에 관한 연구)

  • Choi, Ki-Ok;Park, Moon-Woo;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.55-60
    • /
    • 2019
  • The occurrence of fire in rack-type warehouses may either lead to the warehouses getting entirely burned up or collapsing. This can be attrubuted to the high height of rack-type warehouses, in which combustibles are generally vertically stacked. These characteristics make it difficult to detect a fire early; because detectors are installed on the ceiling, these fires cannot be extinguished at an early stage. In this study, the flow of heat and smoke generated by a fire in a rack-type warehouse was analyzed using a fire dynamic simulator. Through this analysis, the optimal installation conditions of fire detectors for the early detection of fire in rack-type warehouses were confirmed. The analysis results confirmed that complex detection of heat and smoke is required for the early detection of fire in rack type warehouses. Furthermore, it was found that fixed temperature detectors are not suitable for these warehouses, resulting in the need to install heat-smoke hybrid detectors at every three rack levels.

Estimation of fire Experiment Prediction by Utility Tunnels Fire Experiment and Simulation (지하공동구 화재 실험 및 시뮬레이션에 의한 화재 설칠 예측 평가)

  • 윤명오;고재선;박형주;박성은
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • The utility tunnels are the important facility as a mainstay of country because of the latest communication developments. However, the utilities tunnel is difficult to deal with in case of a fire accident. When a cable burns, the black smoke containing poisonous gas will be reduced. This black smoke goes into the tunnel, and makes it difficult to extinguish the fire. Therefore, when there was a fire in the utility tunnel, the central nerves of the country had been paralyzed, such as property damage, communication interruption, in addition to inconvenience for people. This paper is based on the fire occurred in the past, and reenacting the fire by making the real utilities tunnel model. The aim of this paper is the scientific analysis of the character image of the fire, and the verification of each fire protection system whether it works well after process of setting up a fire protection system in the utilities tunnel at a constant temperature. The fire experiment was equipped with the linear heat detector, the fire door, the connection water spray system and the ventilation system in the utilities tunnel. Fixed portion of an electric power supply cable was coated with a fire retardant coating, and a heating tube was covered with a fireproof. The result showed that the highest temperature was $932^{\circ}c$ and the linear heat detector was working at the constant temperature, and it pointed at the place of the fire on the receiving board, and Fixed portion of the electric power supply cable coated with the fire retardant coating did not work as the fireproof. The heating tube was covered with the fireproof about 30 minutes.

  • PDF