• 제목/요약/키워드: Fixed switching angle

검색결과 13건 처리시간 0.022초

SRM구동을 위한 새로운 제어방식 (A novel Control scheme for SRM drives)

  • 안진우;박한웅;황영문
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.526-529
    • /
    • 1996
  • A novel control scheme for a Switched Reluctance Motor(SRM) drive is described. To increase torque, and to commutate easily, flat-topped phase current and fixed switching angle control is proposed. The conditions for flat-topped phase current are analyzed. It is achieved by voltage control with fixed switching angle. The proposed control system was tested to verify this suggestion. (author). refs., figs., tab.

  • PDF

스위치드 릴럭턴스 전동기 최적운전을 위한 연구 (Research for Optimal Operation of Switched Reluctance Motors)

  • 정성인
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.143-148
    • /
    • 2023
  • SRM의 특성 중 비선형성으로 인해 최대토크 및 최소 토크 맥동 형성을 위한 적정 운전이 어렵다. 또한 고정 스위칭각 제어 때 속도 가변에 따른 토크 형성이 불안정하여 효율을 저하시키는 문제점을 가지고 있다. 따라서 속도 가변에 따른 능동적인 스위칭각 제어가 필요하다. 본 논문에서는 SRM의 비선형성으로 인한 문제점으로부터 선행각 (Advance angle)의 자동제어에 의한 토크 리플 저감과 이에 따른 출력 토크 향상에 의한 구동 성능개선을 위한 방법에 대해 모색하였다. 또한 히스테리시스 전류제어기 성능에 따른 스위칭 가변으로 인한 SRM의 최적 운전에 대해 살펴보았다.

SMR구동을 위한 적정여자전압 고정스위칭각 제어방식 (Proper excitation voltage and fixed switching angle control scheme for SRM drive)

  • 안영주;안진우;조철제;황영문
    • 대한전기학회논문지
    • /
    • 제45권1호
    • /
    • pp.54-59
    • /
    • 1996
  • As the current shape of SRM is of pulse type and changed by the motor parameters and drive conditions, the influences on the drive efficiency by control method are more than other types of motors. In this paper, a proper excitation condition to drive a SRM with high efficiency is proposed and tested. It is derived from the conditions that the phase current of a SRM is to be flat-topped at various drive. The saturation effect of magnetic circuit is accounted for more accurate analysis. Experimental tests are executed to verify the proposed excitation method. This drive system is easy to commutate and also advantageous in reducing torque ripple. (author). 6 refs., 10 figs., 1 tab.

  • PDF

스위치드 릴럭턴스 발전기의 스위칭에 따른 특성 (Characteristics Analysis According to Switching of Switched Reluctance Generator)

  • 오재석;오주환;권병일
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1356-1361
    • /
    • 2008
  • A switched reluctance generator(SRG) has simple magnetic structure, and needs simple power electronic driving circuit. But, a SRG are no windings or permanent magnets on the rotor, and there are concentrated windings placed around each salient pole on the stator. Because of the characteristics of time-sharing excitation, the control of SRG is very flexible. And there are several parameters for controlling SRG, such as switch turn-on angle, switch turn-off angle, and exciting voltage and controlling mode, all these will affect the generation greatly. A SRG has positive torque at increasing inductance region and negative torque at decreasing inductance region. In this paper, we studied characteristics about the switch turn-on and off angles according to switch method for constant output voltage of the fixed speed SRG. It is the acoustic noise and torque ripple characteristics. Characteristics for a switch angle and method are presented by experiment using a 50W SRG with 12/8 poles.

자기동조 제어에 의한 SRM의 최대 토크/효율 운전 (The Maximum Torque/Efficiency of SRM Driving for Self-Tuning Control)

  • 서종윤;차현록;김광헌;임영철;장도현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.677-680
    • /
    • 2003
  • The control of the SRM(Switched Reluctance Motor) is usually based on the non-linear inductance profiles with positions. So determination of optimal switching angle is very different. we present self-tuning control of SRM for maximum torque and efficiency with phase current and shaft position sensor During the sample time, micro-controller checks the number of pre-checked pulse. After micro-controller calculates between two data, it move forward or backward turn-off angle. When the turn-off angle is fixed optimal turn-off angle, turn-on angle moves forward or backward by a step using self-tuning control method. And then, optimal turn-off angle is searched once again. As such a repeating process, turn-on/off angle is moves automatically to obtain the maximum torque and efficiency. The experimental results are presented to validate the self-tuning algorithm.

  • PDF

Achievable Sum Rate Analysis of ZF Receivers in 3D MIMO Systems

  • Li, Xingwang;Li, Lihua;Xie, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1368-1389
    • /
    • 2014
  • Three-dimensional multiple-input multiple-output (3D MIMO) and large-scale MIMO are two promising technologies for upcoming high data rate wireless communications, since the inter-user interference can be reduced by exploiting antenna vertical gain and degree of freedom, respectively. In this paper, we derive the achievable sum rate of 3D MIMO systems employing zero-forcing (ZF) receivers, accounting for log-normal shadowing fading, path-loss and antenna gain. In particular, we consider the prevalent log-normal model and propose a novel closed-form lower bound on the achievable sum rate exploiting elevation features. Using the lower bound as a starting point, we pursue the "large-system" analysis and derive a closed-form expression when the number of antennas grows large for fixed average transmit power and fixed total transmit power schemes. We further model a high-building with several floors. Due to the floor height, different floors correspond to different elevation angles. Therefore, the asymptotic achievable sum rate performances for each floor and the whole building considering the elevation features are analyzed and the effects of tilt angle and user distribution for both horizontal and vertical dimensions are discussed. Finally, the relationship between the achievable sum rate and the number of users is investigated and the optimal number of users to maximize the sum rate performance is determined.

Performance Evaluation of Various Bus Clamped Space Vector Pulse Width Modulation Techniques

  • Nair, Meenu D.;Biswas, Jayanta;Vivek, G.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1244-1255
    • /
    • 2017
  • The space vector pulse width modulation (SVPWM) technique is a popular PWM method for medium voltage drive applications. Conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are the most common SVPWM techniques. This paper evaluates the performance of various advanced BCSVPWM strategies in terms of their harmonic distortion and switching loss based on a uniform frame work. A uniform frame work, pulse number captures the performance parameter variations of different SVPWM strategies for various number of samples with heterogeneous pulse numbers. This work compares different advanced BCSVPWM techniques based on the modulation index and location of the clamping position (zero vector changing angle ) of a phase in a line cycle. The frame work provides a fixed fundamental frequency of 50Hz. The different BCSVPWM switching strategies are implemented and compared experimentally on a 415V, 2.2kW, 50Hz, 3-phase induction motor drive which is fed from an IGBT based 2 KVA voltage source inverter (VSI) with a DC bus voltage of 400 V. A low cost PIC microcontroller (PIC18F452) is used as the controller platform.

Fast clip을 적용한 콘크리트궤도용 노스가동 분기기 개발 (Development of Movable nose crossing turnout on concrete track using Fast Clip)

  • 황광하;류기대;박춘복;박광련;윤병현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.287-296
    • /
    • 2011
  • Turnout is a mechanical installation enabling railway trains to be guided from one track to another at a railway junction. A movable nose crossing frog is a device used at a railway turnout to eliminate the gap at the common crossing (High manganese, block, assembly crossing)which can cause impact damage, noise and vibration. Our government has a plan speed up of conventional line to 250km/h semi-high speed. We had already developed flexible turnout with fixed crossing(High manganese) and SFC fastening system can cover in the semi-high speed line In this study is about development of the movable nose crossing turnout available Semi-high speed line on concrete track. This paper describes about geometry, attack angle, bending stress at the nose, switching force, safety of continuous welded long rails. This movable nose crossing turnout is expected greatly increases passing speed of turnout in national railway.

  • PDF

마이크로 콘드롤러를 이용한 SRM구동용 디지털 방식 인버터에 관한 연구 (A Study on the Digital inverter for SRM Drive using Microcontroller)

  • 안진우;김철우
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제10권6호
    • /
    • pp.81-87
    • /
    • 1996
  • 본 논문은 SRM 의 가변속 구동을 위한 디지털 방식 인버터에 관한 연구이다. 전동기의 속도제어를 위해 고정스위치각과 가변전압제어방식을 사용하였으며 이는 평탄 상전류를 얻어 토오크 맥동을 저감하고 상제어를 위한 위상각 제어를 하지 않아 제어시스템을 단순하게하는 장점을 가진다. 8097마이크로콘트롤러를 이용하여 제어시스템을 디지털화, 소형화하고 제어의 유연성을 높였다.

  • PDF

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.