• Title/Summary/Keyword: Fixed outer-ring type

Search Result 11, Processing Time 0.026 seconds

Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet (초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석)

  • Lee, E.R.;Bae, D.K.;Chung, Y.D.;Yoon, Y.S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

Analysis on the Characteristics of the Superconducting Electrodynamic Suspension According to the Variation of the Ground Conductor (지상도체 변화에 따른 초전도 반발식 자기부상 특성 해석)

  • Bae, Duck-Kweon;Cho, Han-Wook;Lee, Jong-Min;Han, Hyung-Suk;Lee, Chang-Young;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1159_1160
    • /
    • 2009
  • This paper presents the numerical simulation results on the supercodnucting electrodynamic suspension (EDS) simulator according to the variation of the ground conductor. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible way to simulate the EDS system were simulated in this paper by using finite element method (FEM). The static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

  • PDF

A Study on Contact Force Analysis of Fixed Outer-Ring Type Epicycloid Plate Gear for Cycloidal Speed Reducer with Friction Effect (외륜 고정형 에피 사이클로이드 감속기의 작용력 해석법에 관한 연구)

  • Chang S.W.;Hong J.P.;Shin J.H.;Kwon S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1652-1655
    • /
    • 2005
  • All teeth on the cycloidal plate gear exist in the contact motion with rollers and the forces are interacted between roller gears with cycloidal plate gears. So, the contact forces and friction forces must be required to improve the accuracy in design procedures of cycloidal speed reducers. This paper presents a force analysis considered the friction effect approach derived by static force equilibrium condition, geometrical adaptation, instant velocity center method and relative velocity method. Finally, the paper develops CAD-program for the construction of the design automation using the proposed method.

  • PDF

Characteristic Analysis of HTS EDS System with Various Ground Conductors

  • Bae, Duck-Kweon;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.21-24
    • /
    • 2010
  • This paper deals with numerical analysis on a high-$T_c$ superconducting (HTS) electrodynamic suspension (EDS) simulator according to the variation of the ground conductor conditions. Because the levitation force of EDS system is formed by the magnetic reaction between moving magnets and fixed ground conductors, the distribution of the magnetic flux on a ground conductor plays an important role in the determining of the levitation force level. The possible way to analyze HTS EDS system was implemented with 3D finite element method (FEM) tool. A plate type ground conductor generated stronger levitation force than ring type ground conductor. Although the outer diameter of Ring3 (335 mm) was larger than that of Ring2 (235 mm), the levitation force by Ring2 was stronger than that by Ring3. Considering the results of this paper, it is recommended that the magnetic flux distribution according to the levitation height and magnet current should be taken into account in the design of the ground conductors.

Multibody modeling and Analysis on Difference of Pin-reaction Force and Vibration caused by Offset in Fixed Outer Ring Type Cycloidal Speed Reducer (다물체 모델링을 이용한 외륜 고정형 Cycloid 감속기의 Offset에 의한 핀반력 및 진동차이 분석)

  • Kim, Hong Ki;Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1057-1063
    • /
    • 2012
  • A cycloid speed reducer is a type of the speed reducers. The cycloid speed reducer has a eccentric rotating motion and offset to avoid some problem of assembly, so it has a disadvantage for vibration. In this paper, a multi-body dynamic model is developed for a cycloid speed reducer and the dynamic behaviors of the reducer are investigated. The cycloid speed reducer consists of cycloidal plate gears, housing gear, input shaft, output pin and shaft, and eccentric bearings. Using a CAD program, each component of cycloid reducer is modeled based on the offset and multi-body simulations are performed using Recurdyn. As a result, the pin reaction force and the amplitude of bearing displacement are increased by the offset.

Model Test of Dual-Buoy Wave Energy Converter using Multi-resonance (다중 공진을 이용한 이중 부이 파력발전장치의 모형실험)

  • Kim, Jeong-Rok;Hyeon, Jong-Wu;Koh, Hyeok-Jun;Kweon, Hyuck-Min;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • In this study, we proposed a new type of dual-buoy wave energy converter (WEC) exploiting multi-resonance and analyzed the experimental results from a model test in a 2-D wave flume. A dual-buoy WEC using multi-resonance has two advantages: high efficiency at the resonant frequencies and the potential to extend the frequency range available to extract wave power from the WEC. The suggested WEC was composed of an outer buoy and an inner buoy sliding vertically inside the outer buoy. As the power take-off device, a linear electric generator (LEG) consisting of permanent magnets and coils fixed at each buoy was adopted. Electricity was produced by the relative heave motion between the two buoys. To search for the optimal shape of a dual-buoy WEC, we conducted experiments on the heave motion of a two-body system in regular waves without an LEG installed. Model tests with six combinations of experimental models were conducted in order to find the motion characteristics of a dual-buoy WEC. It was found that model 2, which included a ring-shaped appendage to move the resonant frequency of the outer buoy toward a high value, showed a higher relative heave response amplitude operator (RAO) curve than model 1. In addition, the double-peak shape of the heave RAO curve shown for model 2 indicated the extension of the frequency range for extracting wave power in irregular waves.

Vibration Analysis of Planetary Fixed Outer-ring Type Cycloidal Speed Reducer by using Multi-body Modeling (다물체 모델링을 이용한 2단 유성식 외륜 고정형 사이클로이드 감속기의 진동특성분석)

  • Kim, Hong Ki;Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.234-239
    • /
    • 2013
  • There are many types of speed reducer for industrial uses. However the cycloid speed reducer is widely used in manipulators based on excellent performance of low backlash, high reduction ratio and compact size. It is essential to use precision speed reducer for accuracy of position controls on robot systems and electric vehicles. The cycloid speed reducer has a eccentric rotating motion and offset to avoid some problem of assembly, so it has a disadvantage for vibration. In this paper, a multi-body dynamic model is developed for a cycloid speed reducer and the dynamic behaviors of the reducer are investigated. The cycloid speed reducer consists of cycloidal plate gears, housing gear, input shaft, output pin and shaft, and eccentric bearings. Using a CAD program, each component of cycloid reducer is modeled based on the offset and eccentric. Multi-body simulations using Recurdyn and test using a rig tester are performed. As a result, the pin reaction force and the amplitude of housing displacement are increased by the larger offset and smaller eccentric value of cycloid reducer.

Mechanical Characteristics of Retractable Radial Cable Roof Systems (개폐식 방사형 케이블 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo;Choe, Dong-Il
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.21-32
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics on the geometric nonlinear behavior of radial cable roof systems for long span retractable cable roof structures. The retractable roof is designed as a full control system to overcome extreme outdoor environments such as extreme hot or cold weather, strong wind or sunlight, and the cable roof greatly can reduce roof weight compared to other rigid structural system. A retractable cable roof system is a type of structures in which the part of entire roof can be opened and closed. The radial cable roof is an effective structural system for large span retractable roofs, the outer perimeter of the roof is a fixed membrane roof and the middle part is a roof that can be opened and closed. The double arrangement cables of a radial cable truss roof system with reverse curvature works more effectively as a load bearing cables, the cable system can carry vertical load in up and downward direction. In this paper, to analyze the mechanical characteristics of a radial cable roof system with central posts, the authors will investigate the tensile forces of bearing cables, stabilized cables, ring cables, and the deflection of roof according to the height of the post or hub that affects the sag ratio of cable truss. The tensile forces of the cables and the deflection of the roof are compared for the cases when the retractable roof is closed and opened.