• Title/Summary/Keyword: Fixed guide

Search Result 142, Processing Time 0.025 seconds

Study on the floating coupling for high precision feeding with ballscrew (고정밀 이송을 위한 볼스크류용 체결기구에 관한 연구)

  • PARK, C.H.;KIM, I.C.;CHUNG, Y.K.;LEE, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.157-163
    • /
    • 1997
  • In the case of direct connecting the nut of ballscrew to guide table, machining error and misalignment of ballscrew largely affect to the motional accuracy of guideway. For decreasing these influences, two type of floating couplings: leaf spring type and hybrid type which releases the table from nut of ballscrew except feed and rotational direction is proposed in this study. In order to verify practical availability of the proposed floating couplings, motional accuracy, dynamic characteristics and micro step response of hydrostatic guideway, mounted with each type of couplings are tested. The conventional fixed type coupling is also tested as the reference in characteristics. From the results of experiments, it is proved that the hybrid type coupling is superior to other couplings and is available to high precision feeding system with ballscrew.

  • PDF

Structural Capability Evaluation of the Conventional and Pilot Type Valves for LNG/LNG-FPSO Ships (LNG/LNG-FPSO 선박용 컨벤셔널 및 파일럿 타입 밸브의 구조성능평가)

  • Hwang, Dong Wook;Kim, Sung Jin;Bae, Jun Ho;Jung, Sung Yuen;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1331-1339
    • /
    • 2012
  • Safety valve used in LNG/LNG-FPSO ships is a high value valve, and it plays an important role in maintaining a fixed level of pressure by emitting LNG gas out of pipes in LNG piping system under the cryogenic and high-pressure condition when the pressure of the system connected with the LNG storage tank and pipes reaches over the set pressure. The structural stability is required for the inner pressure and thermal load because of the cryogenic and high-pressure condition, and a reliability of the safety valve is necessary for impact and deformation by opening the valve. But, the safety valve, which plays a key role for a safety of the transport and storage system, is depended on imports for over 90%, and in domestic production, the design of the valve is performed on the basis of experiences of the works without quantitative analysis for the inner operation characteristics and structural stability of the valve. In this study, impact velocity is calculated by theoretical analysis for obtaining the structural stability of the guide according to the impact load by opening the valve. The shape of the guide and the diaphragm for satisfying the structural stability are suggested and verified by using a thermal-structural analysis.

Arthroscopic Treatment of Fractures of the Intercondylar Eminence of the Tibia Using Pull-Out Wire (견인강선을 이용한 경골극 견열 골절의 관절경적 치료)

  • Kim, Hyun Kon;Kim, Sung Jae;Hahn, Myung Hoon;Kang, Yong Ho;Jung, Hwan Yong
    • Journal of the Korean Arthroscopy Society
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • Recently, a variety of arthroscopic techniques have been reported for the treatment of the displaced tibial eminence fracture. The purpose of this study was to describe details of arthroscopic technique using pull-out wire and to evaluate the results. Eleven patients with irreducible type II and type III tibial eminence fractures underwent the arthroscopic reduction and internal fixation using double strand pull-out wiring. The anterior cruciate ligament tibial drill guide was utilized for the reduction of fracture and passage of the guide pins. The tibial eminence fracture was firmly fixed with double strand 26-gauge pull-out wire(0.45mm diameter). Fracture union was achieved at 7.2 weeks (range, six to eight weeks) after operation. All cases were united at the last follow-up. Subjectively, nine patients had no pain and no restriction of daily activities. Two patients with combined injuries had limitation of knee motion(10 to 130 degrees, respectively) and one patient showed mild anterior laxity. Early rehabilitation was enabled without loss of reduction and breakage of pull-out wire. The arthroscopic reduction and internal fixation using pull-out wire showed good results including early rehabilitation, early fracture union, minimal morbidity, and no requirement of the second operation for hard ware removal.

  • PDF

Miniature PZT actuated microdrive for chronic neural recording in small animals (신경신호 기록을 위한 PZT기반 마이크로 드라이브)

  • Park, Sang-Kyu;Park, Hyun-Jun;Park, Suk-Ho;Kim, Byung-Kyu;Shin, Hee-Sub;Lee, Suk-Chan;Kim, Hui-Su;Kim, Eun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.38-40
    • /
    • 2005
  • Microdrive with high precision and light mass enough to install on mouse head was fabricated for recording the reliable signal of neuron cell to understand the brain study. The proposed microdrive has three H-form PZT actuators and its guide structure. The microdrive operation principle is based on the well known inchworm principle. The synchronization of three PZT actuators is able to produce the linear motion along the guide structure. Our proposed microdrive has a precise accuracy of about 100nm and a long stroke of about 5mm. The electrode which is used for the recording of the action potential of the neuron cell was fixed at one of PZT actuators. The proposed microdrive was suited to acquisition of signals from in vivo extra-cellular single-unit recoding. On the condition of the anesthetized mouse, the single-unit signals could be recorded by using the proposed microdrive. In addition, applying the PZT microdrive to an alert mouse, we try to implant it on a mouse brain skull to explore single neuron firing.

  • PDF

Mandible Reconstruction with 3D Virtual Planning

  • Woo, Taeyong;Kraeima, Joep;Kim, Yong Oock;Kim, Young Seok;Roh, Tai Suk;Lew, Dae Hyun;Yun, In Sik
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.90-93
    • /
    • 2015
  • The fibula free flap has now become the most reliable and frequently used option for mandible reconstruction. Recently, three dimensional images and printing technologies are applied to mandibular reconstruction. We introduce our recent experience of mandibular reconstruction using three dimensionally planned fibula free flap in a patient with gunshot injury. The defect was virtually reconstructed with three-dimensional image. Because bone fragments are dislocated from original position, relocation was necessary. Fragments are virtually relocated to original position using mirror image of unaffected right side of the mandible. A medical rapid prototyping (MRP) model and cutting guide was made with 3D printer. Titanium reconstruction plate was adapted to the MRP model manually. 7 cm-sized fibula bone flap was designed on left lower leg. After dissection, proximal and distal margin of fibula flap was osteotomized by using three dimensional cutting guide. Segmentation was also done as planned. The fibula bone flap was attached to the inner side of the prebent reconstruction plate and fixed with screws. Postoperative evaluation was done by comparison between preoperative planning and surgical outcome. Although dislocated condyle is still not in ideal position, we can see that reconstruction was done as planned.

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF

Full mouth rehabilitation utilizing computer guided implant surgery and CAD/CAM (Computer guided implant surgery와 CAD/CAM을 활용한 전악 수복 증례)

  • Kim, Sungjin;Han, Jung-Suk;Kim, Sung-Hun;Yoon, Hyung-In;Yeo, In-Sung Luke
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Computer aided design and manufacturing and implant surgery using a guide template improve restoration-driven implant treatment procedures. This case utilized those digital technologies to make definitive prostheses for a patient. According to the work flow of digital dentistry, cone beam computed tomography established the treatment plan, which was followed to make the guide template for implant placement. The template guided the implants to be installed as planned. The customized abutments and surveyed fixed restorations were digitally designed and made. The metal framework of the removable partial denture was cast from resin pattern using an additive manufacturing technique, and the artificial resin teeth were replaced with the zirconia onlays for occlusal stability. These full mouth rehabilitation procedures provided functionally and aesthetically satisfactory results for the patient.

A Study on Elastic Shear Buckling Coefficients of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 전단좌굴계수에 관한 연구)

  • Lee, Doo-Sung;Lee, Sung-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.367-373
    • /
    • 2008
  • In the design of horizontally curved plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear. Currently, elastic shear buckling coefficients of curved web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that straight web panels without curvature are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the curved plate girder, the elastically restrained support may behave rather closer to a fixed support. The buckling strength of curved girder web is much greater (maximum 38%) than that of a straight girder calculated under the assumption that all four edges are simply supported in Lee and Yoo (1999). In the present study, a series of numerical analyses based on a 3D finite element modeling is carried out to investigate the effects of geometric parameters on both the boundary condition at the juncture and the horizontal curvature of web panel, and the resulting data are quantified in a simple design equation.

All-on-6 implant fixed prosthesis restoration with full-digital system on edentulous patient: A case report (무치악 환자에서 완전 디지털 시스템을 활용한 All-on-6 임플란트 고정성 보철물 수복 증례)

  • Lee, SeungJin;Jeong, Seung-Mi;Chung, Chae-Heon;Fang, YiQin;Choi, Byung-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.497-507
    • /
    • 2021
  • All-on-six concept can be used as one of the treatment options to maximize the use of available residual alveolar bone for implant-supported fixed prosthesis on edentulous patients. But this process is complex and cumbersome. Digital system can be used at multiple steps, from implantation to prosthetic restoration, to overcome this shortcoming. In this case of a maxillary edentulous patient aged 76, digital system was used for restoration of 1-piece design, screw retained fixed prosthesis from diagnosis, implant surgery to fabrication of provisional and final prosthesis. For preoperative diagnosis and treatment planning stage, intra-oral information of a patient was digitalized by direct intra-oral scan. Surgical guide and immediate provisional prosthesis was designed based on this digitalized data. Patient's inconvenience was minimized by applying immediate provisional prosthesis, which was delicately fabricated according to the location data of six implants on most suitable residual alveolar bone. Then, final prosthesis was designed and fabricated going through new interim prosthesis which was newly designed and fabricated, considering patient's requests, stable vertical dimension and occlusion, and esthetic factors using digital system. We hereby report a case successfully applying digital system to multiple steps including implant surgery to fabricating prosthesis, to simplify existing complicated implant treatment procedure to an edentulous patient.

Full mouth rehabilitation of patient with severe dental caries with implant fixed prosthesis fabricated with milling and 3D printing method: A case report (밀링 및 3D 프린팅 방법으로 제작된 임플란트 보철물을 이용한 심한 우식 환자의 완전 구강 회복 증례)

  • Kim, Taeyoon;Lee, Jun-Suk;Hong, Seoung-Jin;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.288-295
    • /
    • 2019
  • Passive fit of prosthesis is an essential property of implant supported prosthesis for long term success and minimization of complications. And the property is determined mostly by fabrication procedure. There were limitations of extensive implant prosthesis because conventional casting method generate contraction error of long span prosthesis. However, Computer-aided design/Computer-aided manufacturing (CAD/CAM) technology of 3D printing and milling metal framework can overcome those limitations. This case is a full mouth rehabilitation using extensive implant fixed prosthesis. Removable interim prosthesis was made for esthetic, functional evaluation and a guide for implant insertion. After the insertion, implant fixed interim prosthesis was delivered. After additional evaluation and adjustment, final prosthesis was designed with CAD, the fabricated with CAM. Milling technique was used for anterior screw type implant superstructure and 3D printing technique was used for the anterior and posterior implant copings. Fit of the final restoration was favorable. The practitioner and patient were both esthetically and functionally satisfied with the final result.