• Title/Summary/Keyword: Fixed Weighted Method

Search Result 48, Processing Time 0.021 seconds

A Heterogeneous VRP to Minimize the Transportation Costs Using Genetic Algorithm (유전자 알고리듬을 이용한 운행비용 최소화 다용량 차량경로문제)

  • Ym, Mu-Kyun;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.103-111
    • /
    • 2007
  • A heterogeneous VRP which considers various capacities, fixed and variable costs was suggested in this study. The transportation cost for vehicle is composed of its fixed and variable costs incurred proportionately to the travel distance. The main objective is to minimize the total sum of transportation costs. A mathematical programming model was suggested for this purpose and it gives an optimal solution by using OPL-STUDIO (ILOG CPLEX). A genetic algorithm which considers improvement of an initial solution, new fitness function with weighted cost and distance rates, and flexible mutation rate for escaping local solution was also suggested. The suggested algorithm was compared with the results of a tabu search and sweeping method by Taillard and Lee, respectively. The suggested algorithm gives better solutions rather than existing algorithms.

Dynamic threshold location algorithm based on fingerprinting method

  • Ding, Xuxing;Wang, Bingbing;Wang, Zaijian
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.531-536
    • /
    • 2018
  • The weighted K-nearest neighbor (WKNN) algorithm is used to reduce positioning accuracy, as it uses a fixed number of neighbors to estimate the position. In this paper, we propose a dynamic threshold location algorithm (DH-KNN) to improve positioning accuracy. The proposed algorithm is designed based on a dynamic threshold to determine the number of neighbors and filter out singular reference points (RPs). We compare its performance with the WKNN and Enhanced K-Nearest Neighbor (EKNN) algorithms in test spaces of networks with dimensions of $20m{\times}20m$, $30m{\times}30m$, $40m{\times}40m$ and $50m{\times}50m$. Simulation results show that the maximum position accuracy of DH-KNN improves by 31.1%, and its maximum position error decreases by 23.5%. The results demonstrate that our proposed method achieves better performance than other well-known algorithms.

Hierarchical Age Estimation based on Dynamic Grouping and OHRank

  • Zhang, Li;Wang, Xianmei;Liang, Yuyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2480-2495
    • /
    • 2014
  • This paper describes a hierarchical method for image-based age estimation that combines age group classification and age value estimation. The proposed method uses a coarse-to-fine strategy with different appearance features to describe facial shape and texture. Considering the damage to continuity between neighboring groups caused by fixed divisions during age group classification, a dynamic grouping technique is employed to allow non-fixed groups. Based on the given group, an ordinal hyperplane ranking (OHRank) model is employed to transform age estimation into a series of binary enquiry problems that can take advantage of the intrinsic correlation and ordinal information of age. A set of experiments on FG-NET are presented and the results demonstrate the validity of our solution.

Mixed-effects model by projections (사영에 의한 혼합효과모형)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1155-1163
    • /
    • 2016
  • This paper deals with an estimation procedure of variance components in a mixed effects model by projections. Projections are used to obtain sums of squares instead of using reductions in sums of squares due to fitting both the assumed model and sub-models in the fitting constants method. A projection matrix can be obtained for the residual model at each step by a stepwise procedure to test the hypotheses. A weighted least squares method is used for the estimation of fixed effects. Satterthwaite's approximation is done for the confidence intervals for variance components.

Identification of guideway errors in the end milling machine using geometric adaptive control algorithm (기하학적 적응제어에 의한 엔드밀링머시인의 안내면 오차 규명)

  • 정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.163-172
    • /
    • 1988
  • An off-line Geometric Adaptive Control Scheme is applied to the milling machine to identify its guideway errors. In the milling process, the workpiece fixed on the bed travels along the guideway while the tool and spindle system is fixed onto the machine. The scheme is based on the exponential smoothing of post-process measurements of relative machining errors due to the tool, workpiece and bed deflections. The guideway error identification system consists of a gap sensor, a, not necessarily accurate, straightedge, and the numerical control unit. Without a priori knowledge of the variations of the cutting parameters, the time-varying parameters are also estimated by an exponentially weighted recursive least squares method. Experimental results show that the guideway error is well identified within the range of RMS values of geometric error changes between machining passes disregarding the machining conditions.

An Investigation on Densification by Modified Weighted Station Approach (가중측점망 조정법의 적용에 관한 연구)

  • Baick, Eun Kee;Lee, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.133-141
    • /
    • 1991
  • The empirical method is used to integration adjustment for the coordinates revision of a national control point but the existing values are not to be changed or changed with small variation by suitable datum selection (for example, fixed points). This paper treats the modified weighted station parameter adjustment by quasi-observations, and the method used only variance elements of existing coordinates which is substituted for all covariance elements. The movement detection of unstable points and the junction adjustment of new networks are successfully executed by the method, in integration of new secondary networks to old-secondary-triangulation points which are in the absence of the original observations in Korea. The investigation results reveal that the accuracy of old-secondary-triangulation points is ${\pm}16^{{\prime}{\prime}}$(${\pm}0.08m$), which results from the densification of test network and the analyses of old survey specifications. and is ${\pm}2.3^{{\prime}{\prime}}$ in fixing of old-secondary-triangulation points.

  • PDF

Development of Simplified Immersed Boundary Method for Analysis of Movable Structures (가동물체형 구조물 해석을 위한 Simplified Immersed Boundary법의 개발)

  • Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.93-100
    • /
    • 2021
  • Since the IB (Immersed Boundary) method, which can perform coupling analysis with objects and fluids having an impermeable boundary of arbitrary shape on a fixed grid system, has been developed, the IB method in various CFD models is increasing. The representative IB methods are the directing-forcing method and the ghost cell method. The directing-forcing type method numerically satisfies the boundary condition from the fluid force calculated at the boundary surface of the structure, and the ghost-cell type method is a computational method that satisfies the boundary condition through interpolation by placing a virtual cell inside the obstacle. These IB methods have a disadvantage in that the computational algorithm is complex. In this study, the simplified immersed boundary (SIB) method enables the analysis of temporary structures on a fixed grid system and is easy to expand to three proposed dimensions. The SIB method proposed in this study is based on a one-field model for immiscible two-phase fluid that assumes that the density function of each phase moves with the center of local mass. In addition, the volume-weighted average method using the density function of the solid was applied to handle moving solid structures, and the CIP method was applied to the advection calculation to prevent numerical diffusion. To examine the analysis performance of the proposed SIB method, a numerical simulation was performed on an object falling to the free water surface. The numerical analysis result reproduced the object falling to the free water surface well.

Target signal detection using MUSIC spectrum in noise environments (MUSIC 스펙트럼을 이용한 잡음환경에서의 목표 신호 구간 검출)

  • Park, Sang-Jun;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.103-110
    • /
    • 2012
  • In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. Using the inverse of the eigenvalue-weighted eigen spectra, the algorithm detects the DOAs of multiple sources. To apply the algorithm in target signal detection for GSC-based beamforming, we utilize its spectral response for the DOA of the target source in noisy conditions. The performance of the proposed target signal detection method is compared with those of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics (ROC) curves.

Analysis of Human Activity Using Motion Vector and GPU (움직임 벡터와 GPU를 이용한 인간 활동성 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1095-1102
    • /
    • 2014
  • In this paper, We proposed the approach of GPU and motion vector to analysis the Human activity in real-time surveillance system. The most important part, that is detect blob(human) in the foreground. We use to detect Adaptive Gaussian Mixture, Weighted subtraction image for salient motion and motion vector. And then, We use motion vector for human activity analysis. In this paper, the activities of human recognize and classified such as meta-classes like this {Active, Inactive}, {Position Moving, Fixed Moving}, {Walking, Running}. We created approximately 300 conditions for the simulation. As a result, We showed a high success rate about 86~98%. The results also showed that the high resolution experiment by the proposed GPU-based method was over 10 times faster than the cpu-based method.

A design of visual weighted quantizer for wavelet image compression (웨이브릿 영상 압축을 위한 인간 시각 가중 양자화기의 설계)

  • 엄일규;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.493-505
    • /
    • 1997
  • In this paper, a wavelet image compression method using human visually estimated quantizer is proposed. The quantizer has three components. These are constructed by using effects of frequency band, background luminance, and spatial masking. The first quantization factor is a fixed constant value for each band. The second factor is calculated by averaging four wavelet coefficients in the lowest frequency band. The third factor is determined by the difference between wavelet coefficients in the lowest frequency band. Arithmetic coding is used for encoding quantized wavelet coefficients. Coefficients in the lowest band are transmitted without loss. Therefore the compressed image is decompressed by using three quantization factors which can be calculated in the receiver. Compared with previous image compression methods which adopted human visual system, the proposed method shows improved results with less computational cost.

  • PDF