• Title/Summary/Keyword: Fixed Position Layout

Search Result 9, Processing Time 0.024 seconds

Comparison of Flow Line Layout and Fixed-Position Layout in a Rail Vehicle Assembly Factory (철도차량 의장공장에서 흐름라인방식과 고정위치형 배치방식의 비교)

  • Moon, Dug Hee;Son, Dong Su;Lee, Young Hoon;Shin, Yang Woo
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.117-129
    • /
    • 2018
  • In this paper we will discuss two different layout concepts which can be applied to rail-vehicle assembly factory. The existing system is based on the traditional flow line, and the suggested system is based on the fixed position layout. The main factors which affect on the system performances are the variation of process time, shortage rate of part and the shortage period. Simulation experiments indicate that the fixed position layout is better with respect to the throughput, mean flow time per vehicle and the mean flow time per fleet. Furthermore, the fixed position layout is more robust than the flow line because performance measures are insensitive to the variations of factors.

Structural Dynamics Modification Using Position of Beam Stiffener on Plate (평판에서 빔 보강재의 결합 위치를 이용한 구조물 변경법)

  • Jung, Eui-Il;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.599-604
    • /
    • 2002
  • Substructures position is considered as design parameter to obtain optimal structural changes to raise its dynamic characteristics. In conventional SDM (structural dynamics modification) method, the layout of modifying substructures position is first fixed and at that condition the structural optimization is performed by using the substructures size and/or material property as design parameters. But in this paper as a design variable substructures global translational and rotational position is treated. For effective structural modification the eigenvalue sensitivity with respect to that design parameter is derived based on measured frequency response function. The optimal structural modification is calculated by combining eigenvalue sensitivities and eigenvalue reanalysis technique iteratively. Numerical examples are presented to the case of beam stiffener optimization to raise the natural frequency of plate.

  • PDF

Structural dynamics modification using position of beam stiffener on plate (평판에서 빔 보강재의 결합 위치를 이용한 구조물 변경법)

  • Jung, Eui-Il;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.361.2-361
    • /
    • 2002
  • Substructures position is considered as design parameter to obtain optimal structural changes to raise its dynamic characteristics. In conventional SDM (structural dynamics modification) method, the layout of modifying substructures position is first fixed and at that condition the structural optimization is performed by using the substructures size and/or material property as design parameters. But in this paper as a design variable substructures global translational and rotational position is treated. (omitted)

  • PDF

Structural Dynamics Modification via Reorientation of Modification Elements (구조물의 결합 위치 변경을 통한 구조물 변경법)

  • Jung, Eui-Il;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.666-669
    • /
    • 2004
  • Substructures position is considered as design parameter to obtain optimal structural changes to raise its dynamic characteristics. In conventional SDM (structural dynamics modification) method, the layout of modifying substructures position is first fixed and at that condition the structural optimization is performed by using the substructures size and/or material property as design parameters. But in this paper as a design variable substructures global translational and rotational position is treated. For effective structural modification the eigenvalue sensitivity with respect to that design parameter is derived based on measured frequency response function. The optimal structural modification is calculated by combining eigenvalue sensitivities and eigenvalue reanalysis technique iteratively. Numerical examples are presented to the case of beam stiffener optimization to raise the natural frequency of plate.

  • PDF

Effective layout of loudspeakers in a multichannel sound system for real time virtual sound reproduction (실시간 가상음장재현을 위한 멀티채널 시스템의 효과적인 스피커 배치)

  • Lee, Chan-Joo;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.455-461
    • /
    • 2000
  • A multichannel signal processing algorithm for generating real time virtual sound field was proposed. Evaluation of the system performance was done by an objective function that minimizes the difference between the real and generated signals at each control point. Since impulse responses at the surface of a rigid sphere show characteristics similar to those of real HRTF, a rigid sphere model was adequate to simulate the multichannel sound system. A two-channel system and two four-channel systems were studied with various combinations of source locations and speaker positions. The results show that a two-channel system has its best configuration when the angle spanned by the loudspeakers is less than $60^{\circ}$. In the case of four-channel systems, the overall performance was highly improved with one pair of speakers fixed at an optimal position. Left/right symmetry was a reasonable choice, but the additional front/back symmetry degraded the performance of system.

  • PDF

Prediction of the ventilation performance in a kitchen with various locations of gas range and window (가스렌지와 창문위치에 따른 주방 배기성능 예측)

  • 김경환;이재헌;박명식;이대우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2000
  • This paper presents the predicted results by CFD technique of air flow and contaminant distribution in a full-scale kitchen opened to a living room, ventilated by a exhaust hood. To analyze the characteristics of the indoor environment, the concept of contaminant index was defined. In this study, the locations of the gas range and the window were chosen as the parameters to investigate the indoor environment. The values of the contaminant index for several layout of the gas range and the window were calculated and compared. When the gas range is installed along the wall with specified window location, its position in relation to the wall has unnoticed effect on contaminant infer. Once the location of the gas range is fixed, the indoor air quality may deteriorate by the proximity of the window to the gas range. This is due to the shorter distance that external fresh air must travel within the kitchen before it reaches the exhaust fan.

  • PDF

Quasi-optical design and analysis of a remote steering launcher for CFETR ECRH system

  • Zhang Chao;Xiaojie Wang;Dajun Wu;Yunying Tang;Hanlin Wang;Dingzhen Li;Fukun Liu;Muquan Wu;Peiguang Yan;Xiang Gao;Jiangang Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1619-1626
    • /
    • 2024
  • In order to optimize the operational safety and reliability of the upper launcher for the CFETR ECRH system, a design of the launcher for NTM control based on the remote steering concept is currently being carried out for comparison with the front steering equivalent. This paper presents the layout design and analysis of the quasi-optical system in the remote steering launcher. A 3D visual quasi-optical design tool has been developed for the quasi-optical system, which can parameterize modeling, perform general astigmatic beam calculation and show the accurate beam propagation path in the upper port. Three identical sets of quasi-optical modules are arranged in the launcher, and each one consists of two fixed double-curvature focusing mirrors, which focus and reflect the steering beams (- 12°-12°) from two square corrugated waveguides. The beam characteristics at the resonance layer are described, and the average beam radius is < 100 mm. The peak head loads on the surfaces of the two fixed mirrors are 1.63 MW/m2 and 1.52 MW/m2. The position and size of the beam channel in the blanket are obtained, and the opening apertures on the launcher-facing and plasma-facing sides of the blanket module are 0.54 m2 and 0.4 m2, respectively.

Optimal 3-D Packing using 2-D Slice Data for Multiple Parts Layout in Rapid Prototyping (신속시작작업에서 2차원 단면데이터를 이용한 3차원 물체의 최적자동배치를 위한 알고리즘의 개발)

  • 허정훈;이건우;안재홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.195-210
    • /
    • 1997
  • In Rapid Prototyping process, the time required to build multiple prototype parts can be reduced by packing several parts optimally in a work volume. Interactive arrangement of the multiple parts is a tedious process and does not guarantee the optimal placement of all the parts. In this case, packing is a kind of 3-D nesting problem because parts are represented by STL files with 3-D information. 3-D nesting is well known to be a problem requiring an intense computation and an efficient algorithm to solve the problem is still under investigation. This paper proposes that packing 3-D parts can be simplified into a 2-D irregular polygon nesting problem by using the characteristic of rapid prototyping process that the process uses 2-dimensional slicing data of the parts and that slice of the STL parts are composed of polygons. Our algorithm uses no-fit-polygon (NFP) to place each slice without overlapping other slices in the same z-level. The allowable position of one part at a fixed orientation for given parts already packed can be determined by obtaining the union of all NFP's that are obtained from each slice of the part. Genetic algorithm is used to determine the order of parts to be placed and orientations of each part for the optimal packing. Optimal orientation of a part is determined while rotating it about the axis normal to the slice by finite angles and flipping upside down. This algorithm can be applied to any rapid prototyping process that does not need support structures.

  • PDF

Study on the Planning Method of the Sacheonwangsa Temple Architecture in Silla (신라사천왕사건축(新羅四天王寺建築)의 설계기술(設計技術) 고찰(考察))

  • Lee, Jeongmin;Mizoguchi, Akinori
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.3
    • /
    • pp.80-109
    • /
    • 2020
  • The Sacheonwangsa Temple in Silla is an esoteric temple that was founded provisionally in 670, and was completed in 679. This study attempted to elucidate the planning method of the Sacheonwangsa Temple based on the results of research on excavations and investigations into its construction processes and construction measures thereof. The research results are as follows. (1) In the site construction, assuming the size of one Bang (坊) on the south of Nangsan Mountain, after dividing the north-south width into three equal parts, there is a possibility that two of these parts were set to the flat portion. (2) In the 'Jochang (祖創, 670)', it is estimated that an area of 300 cheoks by 300 cheoks was postulated on the flat surface, and, as an initial conception, the mandala's plane design of the outer square 2 hasta (3 cheoks) and inner square 1 hasta (1.5 cheoks) was originally devised for the setting of 'Mudra (神印)', and an area 100 times greater has been set as the basis in the scale and layout planning of the central block. (3) During 'Gaechang (攺刱, ~679)', it is judged that because of the narrowness of the distance between the Pagoda and Geumdang Hall, which occurs when the center of the Geumdang Hall coincides with the center of 'the first stage of the foundation (先築基壇)', the scale and layout planning were adjusted from the initial conception. (4) The arrangement of the building was determined by dividing the fixed size of the central block (280 cheoks by 320 cheoks). Specifically, the east-west direction is set on the quartile's line of the east-west width of the central block, and in contrast, the north-south direction is based on the structural characteristics of the central block. It is presumed that the position of the transept was determined through the division and adjustment of the column spacing of the east-west corridor, then the Geumdang Hall and Altar were based on this. (5) The scale of the Geumdang Hall and Pagoda is determined by the petition of the division by the unit fraction starting from the quartile's line of the central block's east-west width. This planning is understood to be based on the self-similarity, which is rooted in the mandala's plane design as the model.