• Title/Summary/Keyword: Fixed Grid System

Search Result 121, Processing Time 0.022 seconds

An Analysis of Cold Gas Flow-Field for UHV Class Interrupters (초고압 가스차단부의 냉가스 유동해석)

  • Song, Gi-Dong;Park, Gyeong-Yeop;Song, Won-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.387-394
    • /
    • 2000
  • This paper presents a method of cold gas flow-field analysis within puffer type GCB(Gas Circuit Breaker). Using this method, the entire interruption process including opening operation of GCB can be simulated successfully. In particular, the distortion problem of the grid due to the movement of moving parts can be dealt with by the fixed grid technique. The gas parameters such as temperature, pressure, density, velocity through the entire interruption process can be calculated and visualized. It was confirmed that the time variation of pressure which was calculated from the application of the method to a model GCB agreed with the experimental one. Therefore it is possible to evaluate the small current interruption capability analytically and to design the interrupter which has excellent interruption capability using the proposed method. It is expected that the proposed method can reduce the time and cost for development of GCB very much. It also will be possible to develop the hot-gas flow-field analysis program by combining the cold-gas flow field program with the arc model and to evaluate the large current interruption capability.

  • PDF

Comparative Study between Two Protection Schemes for DFIG-based Wind Generator Fault Ride Through

  • Okedu, K.E.;Muyeen, S.M.;Takahashi, R.;Tamura, J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2012
  • Fixed speed wind turbine generators system that uses induction generator as a wind generator has the stability problem similar to a synchronous generator. On the other hand, doubly fed induction generator (DFIG) has the flexibility to control its real and reactive powers independently while being operated in variable speed mode. This paper focuses on a scheme where IG is stabilized by using DFIG during grid fault. In that case, DFIG will be heavily stressed and a remedy should be found out to protect the frequency converter as well as to allow the independent control of real and reactive powers without loosing the synchronism. For that purpose, a crowbar protection switch or DC-link protecting device can be considered. This paper presents a comparative study between two protective schemes, a crowbar circuit connected across the rotor of the DFIG and a protective device connected in the DC-link circuit of the frequency converter. Simulation analysis by using PSCAD/EMTDC shows that both schemes could effectively protect the DFIG, but the latter scheme is superior to the former, because of less circuitry involved.

Bulk-Type Cloud Microphysics Parameterization in Atmospheric Models (대기 모형에서의 벌크형 미세구름물리 모수화 방안)

  • Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.227-239
    • /
    • 2019
  • This paper reviews various bulk-type cloud microphysics parameterizations (BCMPs). BCMP, predicting the moments of size distribution of hydrometeors, parameterizes the grid-resolved cloud and precipitation processes in atmospheric models. The generalized gamma distribution is mainly applied to represent the hydrometeors size distribution in BCMPs. BCMP can be divided in three different methods such as single-moment, double-moment, and triple-moment approaches depending on the number of prognostic variables. Single-moment approach only predicts the hydrometeors mixing ratio. Double-moment approach predicts not only the hydrometeors mixing ratio but also the hydrometeors number concentration. Triple-moment approach predicts the dispersion parameter of hydrometeors size distribution through the prognostic reflectivity, together with the number concentrations and mixing ratios of hydrometeors. Triple-moment approach is the most time expensive method because it has the most number of prognostic variables. However, this approach can allow more flexibility in representing hydrometeors size distribution relative to single-moment and double-moment approaches. At the early stage of the development of BMCPs, warm rain processes were only included. Ice-phase categories such as cloud ice, snow, graupel, and hail were included in BCMPs with prescribed properties for densities and sedimentation velocities of ice-phase hydrometeors since 1980s. Recently, to avoid fixed properties for ice-phase hydrometeors and ad-hoc category conversion, the new approach was proposed in which rimed ice and deposition ice mixing ratios are predicted with total ice number concentration and volume.

Three-dimensional Flow Structure inside a Plastic Microfluidic Element (미소유체요소 내부유동의 3차원 측정 및 수치해석)

  • Lee Inwon;An Kwang Hyup;Nam Young Sok;Lee In-seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.419-422
    • /
    • 2002
  • A three-dimensional inlet flow structure inside a microfluidic element has been investigated using a micro-PIV(particle image velocimetry) measurement as well as a numerical analysis. The present study employs a state-of-art micro-PIV system which consists of epi-fluorescence microscope, 620nm diameter fluorescent seed particles and an 8-bit megapixel CCD camera. For the numerical analysis, a commercial software CFD-ACE+(V6.6) was employed for comparison with experimental data. Fixed pressure boundary condition and a 39900 structured grid system was used for numerical analysis. Velocity vector fields with a resolution of $6.7{\times}6.7{\mu}m$ has been obtained, and the attention has been paid on the effect of varying measurement conditions of particle diameter and particle concentration on the resulting PIV results. In this study, the microfluidic elements were fabricated on plastic chips by means of MEMS processes and a subsequent melding process.

  • PDF

A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces

  • Lee, Woo-Il;Park, Jong-Sun;Kim, Min-Soo;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.720-731
    • /
    • 2002
  • Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This study proposes a semi-implicit filling algorithm using VOF in which the PLIC (Piecewise Linear Interface Calculation) -type interface reconstruction method and the donor-acceptor-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream function is proposed to find the velocity of the node that newly enters the computational domain. The effect of wall boundary conditions on the flow field and temperature field is examined by numerically solving a two-dimensional casting process.

Comparison of Operating Characteristics for DFIG and FSIG wind Turbine Systems with Respect to Variable Interconnecting Line Conditions (연계선로의 조건 변화에 따른 DFIG와 FSIG 풍력발전시스템의 운전특성 비교)

  • Ro, Kyoung-Soo;Kim, Tae-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.8-15
    • /
    • 2010
  • This paper analyzes the steady-state output characteristics of variable-speed wind turbine systems using doubly-fed induction generators(DFIG) compared with fixed-speed induction generator(FSIG) wind turbine systems. It also presents simulations of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink and compares the responses between DFIG and FSIG wind turbine systems with respect to wind speed variation, impedance changes and X/R ratio changes of interconnecting circuits. Simulation results show the variation of generator's active output, terminal voltage and fault currents at the interconnecting point. Case studies demonstrate that DFIG wind turbine systems illustrate better performance to 3-phase fault than FSIG's.

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.527-533
    • /
    • 2015
  • This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

Numerical Simulation of Flow around a Fixed Semi-submersible Offshore Structure Using the Modified Marker-density Method (수정된 밀도함수법을 이용한 고정된 반잠수식 해양구조물 주위 유동의 수치시뮬레이션)

  • Ha, Yoon-Jin;Lee, Young-Gill;Jeong, Kwang-Leol;Yang, In-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • It is important to research and understand the physical phenomenon around a semi-submersible offshore structure on waves and currents because the wave run-up and load occurs owing to the waves and currents. In this study, the numerical simulations are performed about flow around a fixed semi-submersible offshore structure. The Modified Marker-density method is adopted in the present computation procedure, this method is one of the various methods to define the free-surface. The present computation results are compared with existing experimental and numerical simulation(VOF method) results. And, the computation results are relatively coincident with the existing results of model test and numerical simulation by VOF method.

Design of Nonlinear Controller for Variable Speed Wind Turbines based on Kalman Filter and Artificial Neural Network (칼만필터 및 인공신경망에 기반한 가변속 풍력발전 시스템을 위한 비선형 제어기 설계)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.243-250
    • /
    • 2010
  • As the wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. Compared to fixed speed turbines, variable speed wind turbines feature higher energy yields, lower component stress and fewer grid connection power peaks. Generally, measurement of wind speed is required for the control of variable speed wind turbine system. However, wind speed measured by anemometers is not accurate owing to various reasons. In this work, a new control algorithm for variable speed wind turbine system based on Kalman filter which can be used for the estimation of wind speed and artificial neural network which can generate optimum rotor speed is proposed. Also, to verify the feasibility of the proposed scheme, various simulation studies are carried out by using Simulink in Matlab.