• Title/Summary/Keyword: Fixed Contact

Search Result 316, Processing Time 0.027 seconds

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Measurement of Pressure-Rise at No-Load in 800kV Model Interrupter (800kV 차단부의 무부하 압력상승 측정)

  • Chang, K.C.;Song, K.D.;Chung, J.K.;Song, W.P.;Kim, J.B.;Park, K.Y.;Shin, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.475-478
    • /
    • 1995
  • The variations of cold gas properties such as density, pressure, temperature and velocity which are dependent each other are closely related with the dielectric recovery of an interrupter. So, the pressure-rises at no-load in the puffer cylinder and in front of fixed arcing contact of 800kV model interrupter were measured experimentally using pressure transducers of strain gage type and semiconducting type, respectively. The maximum value of pressure-rise in the puffer cylinder increased almost linearly from 7.6 bar at the minimum operated pressure to 9.7 bar at the maximum operated pressure, while the pressure-rise in front of fixed arcing contact was independent with the operated pressure. The measured values will be utilized in verifying the self-developed cold flow analysis program and as an input of commercialized CFD program package.

  • PDF

An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates (복합적층판의 저속충격시험 및 거동에 대한 실험적 연구)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.

Effects of a new type of clear overlay retainer on occlusal contacts

  • Kim, Kyoung Yeon;Ahn, Hyo-Won;Kim, Seong-Hun;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.47 no.3
    • /
    • pp.207-212
    • /
    • 2017
  • The popularity of clear overlay retainers (CORs) has increased recently because of their advantages such as better esthetics, cost effectiveness, easy fabrication, and good compliance. However, a deficiency in posterior occlusal settling is a reported limitation of CORs. The aim of this study was to evaluate the posterior occlusal contact changes in a new type of clear orthodontic retainer called Oral-treaper (OTP), which consists of three layers and has stronger mechanical characteristics than do conventional retainers. Three patients who completed fixed orthodontic treatment received OTP as a removable retainer. Cast models were fabricated after the removal of fixed appliances (T1) and after 4 to 11 months of using the retainers (T2). We evaluated all the cast models to compare the post-orthodontic settling pattern during the use of the OTPs. The depth of occlusal contacts was evaluated using color maps. The OTP did not prevent vertical settling in all patients but resulted in an improvement in posterior occlusal contact points.

ECG Measurement Method during Sleep with Array of Capacitive Electrodes Attached to Bed (침대에 부착된 용량성 전극 배열을 이용한 수면 중의 심전도 측정)

  • Lim, Y.G.;Kim, K.K.;Park, K.S.;Jeong, D.U.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.521-524
    • /
    • 2005
  • In order to measure ECG in daily life, a new ECG measurement method on bed was developed. The provided method does not require any direct conductive contact between the instrument and bare skin, so that it does not cause the uncomfortable feel of touch and the possible skin trouble which are typical shortcomings of the conventional conductive contact ECG measurement. The provided method utilized an array of high-input-impedance active electrodes fixed on the mattress and an indirect-skin-contact ground made of a large conductive textile sheet and laid on lower area of the mattress. A thin cotton bedcover covered the mattress, the electrodes, and the conductive textile and subjects lay on the mattress over the bedcover. ECG was obtained successfully. However its signal quality is lower and the motion artifact is larger than direct-contact measurement. Careful measurement setup was needed to reduce the motion artifact originated from variation in static electricity. From the ECG obtained by the provided method, R-peak could be discriminated easily and the information about the position and the posture of the subject could be obtained.

  • PDF

Study of Liquid Transfer Process for micro-Gravure-Offset Printing (마이크로 그라비아 옵셋 프린팅에서의 유체 전이 공정에 관한 연구)

  • Kang, Hyun-Wook;Huang, Wei-Xi;Sung, Hyung-Jin;Lee, Taik-Min;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1098-1102
    • /
    • 2008
  • To increase the ink transfer rate in the micro-gravure-offset printing, the liquid transfer process between two separating plates is investigated. During the liquid transfer process, in which one plate is fixed and the other one moves vertically, a sessile droplet is separated into two droplets. The volume ratio of the two droplets depends on the contact angles of the two plates. In a numerical study of the ink transfer processes, liquid transfer between two parallel separating plates and between a trapezoidal cavity and an upward moving plate are simulated, as models of the printing of ink from the offset pad onto the substrate and the picking up of ink from the gravure plate by the offset pad, respectively. Also, in experimental study, to obtain various surface contact angles, chemical treatment, plasma treatment, and electrowetting- on-dielectric (EWOD) surface are considered. The transfer rate between two plates is calculated by analyzing the droplet images. From the results, the optimal surface contact angles of the units of the micro-gravure-offset printing can be characterized.

  • PDF

Contact-less Conveyance of Conductive Plate by Controlling Permalloy Sheet for Magnetic Shield of Air-gap Magnetic Field from Magnet Wheels (마그네트 휠의 공극 자기장 차폐판 조절에 의한 도전성 평판의 비접촉 반송)

  • Jung, Kwang-Suk;Shim, Ki-Bon;Lee, Sang-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.109-116
    • /
    • 2010
  • The magnet wheel which generates on its interfacing conductive part a repulsive force and a traction torque by rotation of permanent magnets is used to manipulate the conductive plate without mechanical contact. Here, the air-gap magnetic field of the magnet wheel is shielded partially to convert the traction torque into a linear thrust force. Although a magnitude of the thrust force is constant under the fixed open region, we can change the direction of force by varying a position of the shield sheet. So, the spatial position of conductive plate is controlled by not the force magnitude from each magnet wheel but the open position of shield sheet. This paper discusses non-contact conveyance system of the conductive plate using electromagnetic forces from multiple magnet wheels.

Performance Evaluation of Robotic Physics Engine for Mobile Manipulator Simulation (모바일 매니퓰레이터 시뮬레이션을 위한 로봇 물리 엔진의 성능 평가)

  • Kwanwoo Lee;Junheon Yoon;Suhan Park;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • A mobile manipulator is capable of handling a wide range of workspaces by overcoming the limitations of mobility inherent in existing fixed-base manipulators. To simulate the mobile manipulator, two contact operations should be considered in the physics engines. One of these operations is the grasp stability between the gripper and the object, while the other involves the contact between the wheels of the mobile robot and the ground during driving. However, it is still difficult to choose an appropriate physics engine for simulating these contact operations of the mobile manipulator. In this paper, the performance of physics engines for simulating the mobile manipulator is evaluated. Firstly, the grasp stability of the physics engine is quantitatively evaluated based on the contact force discontinuity. Secondly, when the mobile robot is controlled by open or closed-loop control methods, differences in the path taken by the mobile robot depending on the physics engine are analyzed. To assess the performance of robot simulation, three dynamic simulators-MuJoCo, CoppeliaSim, and IsaacSim-are used along with five physics engines: MuJoCo, Newton, ODE, Bullet, and PhysX.

Evaluation of Drilled Shaft's End Condition by Impact-Echo Method (충격반향기법에 의한 현장타설 말뚝기초의 선단 조건 평가)

  • Kim, Dong-Soo;Kim, Hyung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • Experimental model studies were carried out to evaluate the end condition for drilled shafts by applying elastic impact on the top of the shaft, which is one of the various methods using stress waves. Typical impact responses corresponding to the various end conditions including free, fixed, rock-socketed, and soft-bottom with good and poor side contact conditions, were investigated. In order to simulate these renditions, mock-up shaft models made of cement mortar were used. Small-scale laboratory experiments were also performed, and field tests were carried out for the shafts that were socketed into weathered rock. It is found that the rock-socketed condition and depth of penetration into rock ran be identified from the reflection at the interface between the soil and rock in the waveform. The soft bottom rendition can be identified, only when the side contact between shaft and surrounding rock is poor, whereas it cannot be identified when the side contact is good because the waveform is similar to that of fixed end rendition.

Transmission Error Influences by Initial Tension of Timing Chain System (타이밍 체인 시스템의 초기 장력이 전달 오차에 미치는 영향)

  • Park, Yongsik;Jung, Taeksu;Hong, Yunhwa;Kim, Youngjin;Park, Youngkyun;Lee, Jungjin;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • The timing chain system, which is a typical power transmission technology applied to a vehicle, has been widely used by the automotive industry because it is normally designed to last a car's lifetime. However, the timing chain system may cause some problems due to the shape of the chains and the polygonal behavior on contact between the chain and the sprocket. In addition, noise and vibration caused by transmission error are the most typical problems encountered by major automotive manufacturers and they are considered as the main source of customer complaint. The initial tension of the chain-sprocket system is thought to be the main cause of transmission error, and it is regarded as the source of engine vibration and noise. The initial tension of the chain system should be controlled carefully since a low initial tension can cause twisting, which may lead to a system malfunction, while a high initial tension can reduce the service life due to a worn down contact surface. In this paper, the kinematic analysis model is generated with various initial tensions, which are controlled by changing the shape of the fixed guide with the largest contact surface with chain. The results showed that the transmission error was minimized on a particular range of initial tension, and the tendency showed that the error changed with a higher sensitivity at a lower initial tension.