• Title/Summary/Keyword: Five-Grain

Search Result 360, Processing Time 0.033 seconds

The effect of potash on the growth and yields of soybean at different level of soil fertility and application of fertilizer (토양(土壤)과 시비(施肥)를 달리할때 대두생육(大豆生育)에 미치는 가리(加里)의 영향(影響))

  • Cho, C.Y.;Maeng, D.W.
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.107-112
    • /
    • 1968
  • In order to study the effect of potash on the growth and yields of Soybean at different level of soil fertility and application of fertilizer (nitrogen, phosphate and calcium), $2^3$factorical experiment was carried out by pat culture with variety 'Chang-dan-baec-muc' which is most spreaded variety in Korea. The experiment consisted of five replications in a randomized block experiment with three factors (soil, fertilization and potash). Treatment were at two levels; infertile and fertile soil, none and some of fertilization and potash. Thus, the experiment comprised eight treatment combinations which consisted of all combinations. The results of this experiment are as follows: 1. No effect of each of three factors on flowering date was found. 2. Leaf-yellowing and maturing date was quickened on the fertile soil but no effect of fertilization and potash was found. 3. More premature leaf-yellowing was found on the fertile soil. 4. Deeper leaf colour cuss showed on the fertile soil and in the case of fertilization but no effect of potash was found. 5. Increasing tendency of following character: length and width of leaf, height and dia of stem, number of branches and pods; was most remarkable on the fertile soil. Application of fertilizer showed also remarkable tendency of increasing, while increasing tendency of potash was the least. 6. Same tendency was found with following charactors; weight of total plant. stem and shell, and commercial grains, weight of 100 grain and number of commercial grains. 7. As the results of analysis of variance for weight of commercial grain it, was found the teach of the three factors increased soybean yields significantly (weight of commercial grain) but the effect of potash was less than the other two factors. No significant interaction was found among three factors. 8. Greater effect of potash on increasing soybean yields was found on the fertile soil, and in the case of fertilization.

  • PDF

A New High Grain Yielding Forage Rye Cultivar, "Seedgreen" (종자 생산량이 많은 호밀 신품종 "씨드그린")

  • Han, Ouk-Kyu;Hwang, Jong-Jin;Park, Hyung-Ho;Kim, Dea-Wook;Oh, Young-Jin;Park, Tae-Il;Ku, Ja-Hwan;Kwon, Young-Up;Kweon, Soon-Jong;Park, Kwang-Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2015
  • "Seedgreen" (Secale cereal L.), a new rye cultivar was developed by National Institute of Crop Science (NICS), RDA in 2013. It was developed from an open pollination from within 10 rye varieties or lines including "Chochun" in 1995. The line "SR95POP-S1-140-9-1-3-7-5-3" was selected for its excellent agronomic appearance, and was placed in yield trials for three years from 2008 to 2010. The new cultivar was designated "Homil50" and was placed in regional yield trials at the five locations around Korea from 2011 to 2013, during which time the name "Seedgreen" was given. This cultivar is an erect plant type and of a long size, with a dark-green leaf color, a yellowish-white colored, medium-diameter culm, and a brown-colored, medium-size grain. The heading and maturation dates of Seedgreen were April 22 and June 16, which were 3 days and 2 days earlier than that of "Gogu", respectively. Seedgreen also showed better winter hardiness and a greater resistance to lodging and wet injury compared to those of the check cultivar. Over three years, the average dry matter yield of Seedgreen was 8.3 ton $ha^{-1}$ (fresh yield = 39.8 ton $ha^{-1}$), which was harvested in late April and was lower than that of the check cultivar Gogu. The seed productivity of Seedgreen was approximately 4 ton $ha^{-1}$, which was 16 % more than that of the check. Seedgreen was higher to than Gogu in term of protein content (10.5% and 9.7%, respectively), total digestible nutrients (TDN) (58.3% and 57%, respectively), and TDN yield $ha^{-1}$ (4.81 ton and 4.77 ton, respectively). This cultivar is recommended as a fall sowing crop in areas where the average daily minimum-mean temperatures are higher than $-12^{\circ}C$ in January, and as a winter crop for whole-crop forage before the planting of rice or green manure around Korea.

Community Structure of the Macrobenthos in the Soft Bottom of Youngsan River Estuary, Korea 1. Benthic Environment (영산강 하구역의 연성저질에 서식하는 저서동물 군집 1. 저서환경)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.330-342
    • /
    • 1998
  • Benthic environmental parameters were analysed at 40 stations during the period from April 1995 to February 1996. such as water temperature, salinity, and dissolved oxygen (DO)-concentration in the surface and bottom water layers, grain size, chemical oxygen demand (COD), ignition loss, particulate organic carbon (POC) in the sediment of Youngsan River estuary. The water temperature ranged from 4.1 to $29.8^{\circ}C$ in the surface and 4.0 to $20.7^{\circ}C$ in the bottom layers. Salinity ranged from 15.1 to $33.6\%_{\circ}$ in the surface and 31.5 to $33.2\%_{\circ}$ in the bottom layer. The salinity in the outer pan of the study area was higher than that of inner area from autumn to spring, whereas they remained lower in summer. Dissolved oxygen concentration ranged from 5,1 to 11.2 $mg/\ell$ in the surface, and 0.79 to 10,2 $mg/{\ell}$ in the bottom layers. Hypoxic condition ($\le2.0mg/\ell$) was developed in the bottom water layer from Youngsan dike to Mokpo Harhour in summer due to the summer stratification. The surface sediment type was silty clay with a mean grain size of $9.12{\pm}0.45\phi$. The range of COD was from 6.15 to $15.49mgO_2/g$ with a mean of $10.59{\pm}12.64mgO_2/g$. The COD in the inner stations was relatively higher than that of outer stations, and decreased toward the outer part of the study area. Ignition loss (IL) ranged from 3.35 to $15.45\%$ with a mean of $5.96{\pm}1.91\%$. Principal component analysis was carried out from the following five environmental parameters: water temperature, dissolved oxygen in the bottom layer and mean grain size, clay content and COD in the sediment. The forty stations in the study area were classified into three stational groups. Group I was located in the inner part of the estuary characterised by relatively low surface salinity and bottom water temperature, fine sedimemt texture, high organic matter and low dissolved oxygen concentration during the summer. Meanwhile, Group III showing relatively high bottom salinity and water temperature was located in the outer part of the estuary characterising coarse sediment and low organic content in sediment. Group II was between Group I and Group III. The division of the areal groups had high correlations to the DO in the bottom layer and clay content in the sediment.

  • PDF

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures. (함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I))

  • 김재영;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF

Modeling the Effect of a Climate Extreme on Maize Production in the USA and Its Related Effects on Food Security in the Developing World (미국 Corn Belt 폭염이 개발도상국의 식량안보에 미치는 영향 평가)

  • Chung, Uran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.1-24
    • /
    • 2014
  • This study uses geo-spatial crop modeling to quantify the biophysical impact of weather extremes. More specifically, the study analyzes the weather extreme which affected maize production in the USA in 2012; it also estimates the effect of a similar weather extreme in 2050, using future climate scenarios. The secondary impact of the weather extreme on food security in the developing world is also assessed using trend analysis. Many studies have reported on the significant reduction in maize production in the USA due to the extreme weather event (combined heat wave and drought) that occurred in 2012. However, most of these studies focused on yield and did not assess the potential effect of weather extremes on food prices and security. The overall goal of this study was to use geo-spatial crop modeling and trend analysis to quantify the impact of weather extremes on both yield and, followed food security in the developing world. We used historical weather data for severe extreme events that have occurred in the USA. The data were obtained from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). In addition we used five climate scenarios: the baseline climate which is typical of the late 20th century (2000s) and four future climate scenarios which involve a combination of two emission scenarios (A1B and B1) and two global circulation models (CSIRO-Mk3.0 and MIROC 3.2). DSSAT 4.5 was combined with GRASS GIS for geo-spatial crop modeling. Simulated maize grain yield across all affected regions in the USA indicates that average grain yield across the USA Corn Belt would decrease by 29% when the weather extremes occur using the baseline climate. If the weather extreme were to occur under the A1B emission scenario in the 2050s, average grain yields would decrease by 38% and 57%, under the CSIRO-Mk3.0 and MIROC 3.2 global climate models, respectively. The weather extremes that occurred in the USA in 2012 resulted in a sharp increase in the world maize price. In addition, it likely played a role in the reduction in world maize consumption and trade in 2012/13, compared to 2011/12. The most vulnerable countries to the weather extremes are poor countries with high maize import dependency ratios including those countries in the Caribbean, northern Africa and western Asia. Other vulnerable countries include low-income countries with low import dependency ratios but which cannot afford highly-priced maize. The study also highlighted the pathways through which a weather extreme would affect food security, were it to occur in 2050 under climate change. Some of the policies which could help vulnerable countries counter the negative effects of weather extremes consist of social protection and safety net programs. Medium- to long-term adaptation strategies include increasing world food reserves to a level where they can be used to cover the production losses brought by weather extremes.

  • PDF

Marker Assisted Selection of Brown Planthopper Resistance and Development of Multi-Resistance to Insect and Diseases in Rice (Oryza sativa L.) (DNA 마커를 이용한 벼멸구 저항성 선발 및 복합내병충성 벼 계통 육성)

  • Lee, Jong-Hee;Yeo, Un-Sang;Cho, Jun-Hyun;Lee, Ji-Yoon;Song, You-Chun;Shin, Mun-Sik;Kang, Hang-Won;Sohn, Jae-Keun
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.413-421
    • /
    • 2011
  • The main objective of this study was to develop the multi-resistance lines to insects(brown planthopper; BPH, rice green leafhopper; GRH) and disease(blast; BL, bacterial blight; BB and rice stripe virus disease;RSV) with good grain quality and plant type by combining conventional breeding and marker assisted selection(MAS) and to eliminate the linkage drag effects between Bph1 gene and culm length, we conducted MAS of Bph1 gene in advanced backcross and double cross progenies. 'Nampyeong', 'Junam' and 'Milyang220' were used as the parent in this study. 'Milyang220' was used as the donor of brown planthopper resistance gene Bph1 with tall culm length. Two backcross progenies were developed using two recipients 'Nampyeong' carrying GRH resistance gene Grh3(t) with good grain appearance and 'Junam' harboring bacterial blight resistance gene Xa3 with short culm length. Two $BC_1$ generations were resulted from the backcrossing of the $F_1$ plants with recurrent parents 'Nampyeong' and 'Junam'. The second rounds of backcrossing($BC_2$) were derived from the cross of selected resistant $BC_1F_1$ plants based on heterozygous genotype of RM28493 linked to Bph1 gene. The double crossed population was constructed from the cross of between each heterozygous $BC_2F_1$ plants at RM28493 locus of '$Nampyeong^*3$ / Milyang220' and '$Junam^*3$ / Milyang220'., The homozygous alleles in Bph1 gene were selected using co-dominant DNA marker RM28493 in double crossed population. Eighty-five lines with multi-resistance to BL, BB, RSV, GRH and BPH were selected by bio-assay and MAS in generation of double crossing. The culm length, head rice ratio and yield of the selected multi resistance lines was ranged from 71 to 88 cm, from 51 to 93%, from 449 to 629 kg/10a. respectively. We can select a promising multi resistance line similar with 'Nampyeong' of major agronomic traits such as culm legnth, head rice ratio and yield. It was designated as Milyang265. Finally this study was developed the multi resistant varieties against to insects and diseases with the good grain quality 'Milyang265' by the advanced backcross and double cross combining MAS and it can be used as genetic resources of multi-resistance to insect and diseases in rice breeding programs.

Spatio-temporal Characteristics of Macrobenthic Community in the Coastal area of South Korea (우리나라 연안 대형저서동물 시·공간 군집 특성 분석)

  • KIM, Young-Jun;IM, Jung-Ho;CHO, Chun-Ok;RYU, Jong-Seong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.100-117
    • /
    • 2022
  • This study examines the spatio-temporal characteristics of the macrobenthic community in the coastal areas of South Korea for the past six years(2015-2020). The relationship between the number of individuals of macrobenthic species and the benthic environments were investigated using data collected at a total of 154 stations located in the West (70), the South (61), and the East Seas (23), except for the Jeju Sea. We examined the benthic environmental characteristics such as water depth, sediment, grain size, ignition loss, and total organic carbon. A total of 1,614 macrobenthic species were found in the coastal area, with a mean density of 0.62 ind./m2 by station. The mean density was relatively high in the spring and summer seasons (May to August) with more than 450 species. The most dominant species belong to Polychaetes and the top five of them accounted for more than 20% of the total number of populations. The top five species were Heteromastus filiformis, Scoletoma longifolia, Sigambra tentaculata, Sternaspis scutata, and Notomastus latericeus. Cluster analysis was performed on the top five dominant species. The stations were clustered into three groups with similar locations on the West, South, and East Sea. Cluster 1 and 3 represent Heteromastus filiformis (44% each), but cluster 2 represents Scoletoma longifolia (66%). Each cluster has different benthic environmental characteristics, especially in the sediment's sand (31.0%, 51.9%) and clay (15.9%, 9.7%) contents.

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (III) (미세균열의 간격 분포를 이용한 결의 평가 (III))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.311-324
    • /
    • 2016
  • The characteristics of the rock cleavage in Jurassic granite from Geochang were analysed. The evaluation for three quarrying planes and three rock cleavages was performed using the parameters such as (1) reduction ratio between the value of spacing and the value of length, (2) microcrack spacing frequency(N), (3) total spacing($1mm{\geq}$), (4) exponential constant(a), (5) magnitude of exponent(${\lambda}$), (6) mean spacing($S_{mean}$), (7) difference value($S_{mean}-S_{median}$) between mean spacing and median spacing($S_{median}$) and (8) density of spacing. Especially the close dependence between the above spacing parameters and the parameters from the spacing-cumulative frequency diagrams was derived. The discrimination factors representing three quarrying planes and three rock cleavages were acquired through these mutual contrast. The analysis results of the research are summarized as follows. First, the reduction ratios of frequency(N), mean value, median value, the above difference value($S_{mean}-S_{median}$) and density for three rock cleavages are in orders of G(grain, (G1 + G2)/2) < H(hardway, (H1 + H2)/2) < R(rift, (R1 + R2)/2), H < G $\ll$ R, H < G $\ll$ R, H < G < R and H < G $\ll$ R. The values of the above five parameters for three planes show the various orders of R'(rift plane) $\ll$ H'(hardway plane) < G'(grain plane), R' $\ll$ G' < H', R' < H' < G', R' < G' < H' and R' $\ll$ H' < G', respectively. Second, the values of (I) parameters(2, 3, 4 and 5) and (II) parameters(6, 7 and 8) are in orders of (I) H < G < R and (II) R < G < H. On the contrary, the values of the above two groups(I~II) of parameters for three planes show reverse orders. Third, to review the overall characteristics of the arrangement among the six diagrams, these diagrams show an order of R2 < R1 < G2 < G1 < H2 < H1 from the related chart. In other words, above six diagrams can be summarized in order of rift(R1 + R2) < grain(G1 + G2) < hardway(H1 + H2). These results indicate a relative magnitude of rock cleavage related to microcrack spacing. Especially, two parameters for each diagram, the above difference value($S_{mean}-S_{median}$) and mean spacing, could provide advanced information for prediction the order of arrangement among the diagrams. Finally, the general chart for three planes and three rock cleavages were made. From the related chart, three exponential straight lines for three rock cleavages show an order of R(R1 + R2) < G(G1 + G2) < H(H1 + H2). On the contrary, three lines for three planes show an order of H'(R2 + G2) < G'(R1 + H2) < R'(G1 + H1). Consequently, correlation of the mutually reverse order between three planes and three rock cleavages can be drawn from the related chart.

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Gabsan Formation around the Mt. Gachang Area, Chungbuk, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 충북 가창산 지역의 갑산층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • The Middle Carboniferous Gabsan Formation is distributed in the Cheongrim area of southern Yeongwol and the Mt. Gachang area of Chungbuk Province. This study was carried out to investigate the lithological characters and geochemical composition of the limestones and to find out controlling structures of the limestones of the formation. The limestones of the Gabsan Formation are characterized by the light gray to light brown in color and fine and dense textures. The limestone grains are composed of crinoid fragments, small foraminfers, fusulinids, gastropods, ostracods, etc. Due to the recrystallization, some limestones consist of fine crystalline calcites. The chemical analysis of limestones of the formation was conducted to find out the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 49.78-60.63% and the content of MgO ranges from 0.74 to 4.63% The contents of Al$_2$O$_3$ and Fe$_2$O$_3$ are 0.02-0.55% and 0.02${\sim}$0.84% , respectively. The content of SiO$_2$ varies from 1.55 to 4.80%, but some samples contain more than 6.0%. The limestones of the formation can be grouped into two according to the CaO content: One is a group of which CaO content ranges from 49.78 to 56.26% and the other is a group of which CaO content varies from 59.36 to 60.38%. In the first group, the contents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ range very irregularly according to the CaO content. In the second group, the values of MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are nearly same. Detailed structural analysis of mesoscopic structures and microstructures indicates the five phase of deformation in the study area. The first phase of deformation(D$_1$) is characterized by regional scale isoclinal folds, and bedding parallel S$_1$ axial plane foliation which is locally developed in the mudstone and sandstone. Based on the observations of microstructures, S$_1$ foliations appear to be developed by grain preferred orientation accompanying pressure-solution. During second phase of deformation, outcrop scale E-W trending folds with associated foliations and lineations are developed. Microstructural observations indicate that crenulation foliations were formed by pressure-solution, grain boundary sliding and grain rotation. NNW and SSE trending outcrop scale folds, axial plane foliations, crenulation foliations, crenulation lineations, intersection lineations are developed during the third phase of deformation. On the microscale F$_3$ fold, axial plane foliations which are formed by pressure solution are well developed. Fourth phase of deformation is characterized by map scale NNW trending folds. The pre-existing planar and linear structures are reoriented by F$_4$ folds. Fifth phase of deformation developed joints and faults. The distribution pattern of the limestones is mostly controlled by F$_1$ and F$_4$ folds.

  • PDF