• Title/Summary/Keyword: Five phase motor

Search Result 69, Processing Time 0.023 seconds

Control of a Toroidal Type Rotor with a Magnetic Bearing Structure for the Gyro Actuator (자이로 구동기를 위한 자기베어링 구조의 토로이달 형 회전자 제어)

  • Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1703-1708
    • /
    • 2015
  • This paper deals with the position and torque control of a toroidal type rotor which has a magnetic bearing structure. The proposed magnetic bearing structure supports the rotor by the repulsive forces of permanent magnets, and has a two degree of freedom for rotor position when the rotor is rotating. Permanent magnets and coils in the stator allow for a two degree of freedom control of the rotor position and torque generation by reacting with permanent magnets of the rotor. The executed gyro actuator has a number of poles such as five-phase permanent magnet motors and 10 stator coils for the rotor position control. In this study, the verification of the stability of the magnetic bearing was conducted using the equation of motion when the rotor was rotating, and the coil current commutation method for the position control and torque generation was studied. As a result, the feasibility of the proposed structure and control was verified by simulations of Finite Element Method (FEM) and experiments using the executed gyro actuator.

A Comparative Study of Six Sigma Green Belt Training Programs (6시그마 그린벨트 교육 프로그램의 비교 연구)

  • Hong, Sung-Hoon;Song, Jae-Woong
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.7-13
    • /
    • 2003
  • This paper is concerned with a six sigma green belt training program. Comparative studies of existing training programs for three major companies (Samsung Electronics Company, Hyundai Motor Company, and LG Chemical Ltd.) and two consulting firms (Korean Standards Association and Korea Management Association) are made. Based on the comparative studies, a new green belt training program is proposed. The main focus of this program is on manufacturing, specially on cost and waste reductions, yield improvement, and operations with opportunity to improve capacity without major capital expenditure. The green belts take up to 4 or 5 days of intensive, highly quantitative training, roughly corresponding to the five macro phases of the six sigma methodology: define, measure, analyze, improve, and control. The six sigma tool sets for each phase are also specified.

Field Weakening Control for Five-Phase Induction Motor Drives considering the Effect of the 3rd Harmonic (3차 고조파의 영향을 고려한 5상 유도전동기의 약계자 운전)

  • Kang, Seong-Yun;Shin, Hye-Ung;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.343-344
    • /
    • 2015
  • 본 논문은 고속영역에서 3차 고조파의 영향을 고려한 5상 유도전동기의 약계자 운전을 제안한다. 5상 유도전동기는 집중권의 형태로 되어있어 공극 자속이 제 3차 공간 고조파 성분을 포함한다. 따라서 5상 유도전동기의 역기전력은 3차 고조파가 포함된 형태이므로, 5상 유도전동기의 약계자 운전은 3차 고조파 성분을 고려하여 수행해야 한다. 약계자 운전에 앞서 정격 이하의 속도에서는 간접벡터제어를 사용하고, 정격이상의 고속 영역에서는 최대 토크 발생과 전압 및 전류 제한 영역을 고려한 약계자 운전을 수행한다. 본 논문에서는 3차 고조파를 고려한 5상 유도전동기의 약계자 운전을 시뮬레이션으로 검증한다.

  • PDF

The Digital Mock-Up Information System for New Car Development

  • Min, Sung-Ki;Lee, Chul-Woo
    • Proceedings of the CALSEC Conference
    • /
    • 1999.07a
    • /
    • pp.277-299
    • /
    • 1999
  • Since Chrysler Motor Co. had experienced the digital development system in the beginning of 1990's, most of leading automobile companies are trying to apply a digital information system for their own business process reengineering based upon concurrent engineering system from product planning phase. This is called as virtual DMU(Digital Mock-Up) system instead of the traditional PMU(Physical Mock-Up) system. By using the virtual prototype, all of the design requirements and system specifications can be checked, changed and optimized more quickly and more efficiently. This paper consists of five chapters for the DMU information system. In the 1$^{st}$ chapter, the principle of digital design system is suggested by using four basic modules such as product design module, process design module, manufacturing system design module and central control module. The basic scheme of DMU is introduced with the benefits of application in the chapter 2. In the chapter 3, a digital design process of new car development is explained with the detailed DMU design and design review processes. In the chapter 4, the practical DMU manufacturing techniques and applications are introduced as CAD/CAM analyses, DPA(Digital Pre-Assembly)reviews for development, production, operation and maintenance phases, digital tolerance analyses and digital factory analyses for assembling line simulation, automated robot welding processes, production jig & fixtures and painting process simulation. Finally, the activities of digital design support; CAS-styling, CAE-engineering and CAT-testing are summarized for design optimization in the chapter 5. As today's automobile manufactures and related business organizations are struggling to compete in the global marketplace, they are concentrating on efficient use of DMU information system to reduce the new car development cost, to have shorten the delivery schedule and to improve product design quality. To meet the demand of those automobile industries on digital information systems, the CALS(Computer aided Acquisition and Logistics Support) and EC(Electronic Commerce)initiative has been focused as a dominant philosophy in defense & commercial industries, specially automobile industries.s.

  • PDF

The Influence of Different Quantitative Knowledge of Results on Performance Error During Lumbar Proprioceptive Sensation Training (양적 결과지식의 종류가 요추의 고유수용성감각 훈련에 미치는 영향)

  • Cynn, Won-Suk;Choi, Houng-Sik;Kim, Tack-Hoon;Roh, Jung-Suk;Yi, Jin-Bock
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.11-18
    • /
    • 2004
  • This study is aimed at investigating the influence of different quantitative knowledge of results on the measurement error during lumbar proprioceptive sensation training. Twenty-eight healthy adult men participated and subjects were randomly assigned into four different feedback groups(100% relative frequency with an angle feedback, 50% relative frequency with an angle feedback, 100% relative frequency with a length feedback, 50% relative frequency with a length feedback). An electrogoniometer was used to determine performance error in an angle, and the Schober test with measurement tape was used to determine performance error in a length. Each subject was asked to maintain an upright position with both eyes closed and both upper limbs stabilized on their pelvis. Lumbar vertebrae flexion was maintained at $30^{\circ}$ for three seconds. Different verbal knowledge of results was provided in four groups. After lumbar flexion was performed, knowledge of results was offered immediately. The resting period between the sessions per block was five seconds. Training consisted of 6 blocks, 10 sessions per one block, with a resting period of one minute. A resting period of five minutes was provided between 3 blocks and 4 blocks. A retention test was performed between 10 minutes and 24 hours later following the training block without providing knowledge of results. To determine the training effects, a two-way analysis of variance and a one-way analysis of variance were used with SPSS Ver. 10.0. A level of significance was set at .05. A significant block effect was shown for the acquisition phase (p<.05), and a significant feedback effect was shown in the immediate retention phase (p>.05). There was a significant feedback effect in the delayed retention phase (p<.05), and a significant block effect in the first acquisition phase and the last retention phase (p<.05). In conclusion, it is determined that a 50% relative frequency with a length feedback is the most efficient feedback among different feedback types.

  • PDF

Modeling and Experimental Validation of 5-level Hybrid H-bridge Multilevel Inverter Fed DTC-IM Drive

  • Islam, Md. Didarul;Reza, C.M.F.S.;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.574-585
    • /
    • 2015
  • This paper aims to improve the performance of conventional direct torque control (DTC) drives proposed by Takahashi by extending the idea for 5-level inverter. Hybrid cascaded H-bridge topology is used to achieve inverter voltage vector composed of 5-level of voltage. Although DTC is very popular for its simplicity but it suffers from some disadvantages like- high torque ripple and uncontrollable switching frequency. To compensate these shortcomings conventional DTC strategy is modified for five levels voltage source inverter (VSI). Multilevel hysteresis controller for both flux and torque is used. Optimal voltage vector selection from precise lookup table utilizing 12 sector, 9 torque level and 4 flux level is proposed to improve DTC performance. These voltage references are produced utilizing a hybrid cascaded H-bridge multilevel inverter, where inverter each phase can be realized using multiple dc source. Fuel cells, car batteries or ultra-capacitor are normally the choice of required dc source. Simulation results shows that the DTC drive performance is considerably improved in terms of lower torque and flux ripple and less THD. These have been experimentally evaluated and compared with the basic DTC developed by Takahashi.

Performance of Multi-level Inverter for High-Speed SR Drive (SRM의 고속운전을 위한 새로운 멀티레벨 인버터의 구동특성)

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.234-240
    • /
    • 2007
  • In this paper, a novel multi-level inverter for low cost high speed switched reluctance(SR) drive is proposed. The proposed multi-level converter has reduced number of power switches and diodes than that of a conventional asymmetric converter for SRM and smaller voltage rating of the dump capacitor comparing with energy efficient c-dump converter. It can supply five operating modes that is boosted, DC-link, zero, negative bias and negative boosted voltage. The proposed multi-level converter has fast excitation and demagnetization modes of phase current, so dynamic response can be achieved. The proposed multi-level converter is verified by computer simulation and experimental results.

Optimal Design of a Novel Knee Orthosis using a Genetic Algorism (유전자 알고리즘을 이용한 새로운 무릎 보장구의 최적 설계)

  • Pyo, Sang-Hun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1021-1028
    • /
    • 2011
  • The objective of this paper is to optimize the design parameters of a novel mechanism for a robotic knee orthosis. The feature of the proposed knee othosis is to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The quadriceps device operates in five-bar links with 2-DOF motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking. However, the proposed orthosis must use additional linkages than a simple four-bar mechanism. To maximize the benefit of reducing the actuators power by using the developed kinematic design, it is necessary to minimize total weight of the device, while keeping necessary actuator performances of torques and angular velocities for support. In this paper, we use a SGA (Simple Genetic Algorithm) to minimize sum of total link lengths and motor power by reducing the weight of the novel knee orthosis. To find feasible parameters, kinematic constraints of the hamstring and quadriceps mechanisms have been applied to the algorithm. The proposed optimization scheme could reduce sum of total link lengths to half of the initial value. The proposed optimization scheme can be applied to reduce total weight of general multi-linkages while keeping necessary actuator specifications.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF