• Title/Summary/Keyword: Fitted Mesh

Search Result 42, Processing Time 0.028 seconds

Octree Generation and Clipping Algorithm using Section Curves for Three Dimensional Cartesian Grid Generation (삼차원 직교 격자 생성을 위한 단면 커브를 이용한 옥트리 생성과 셀 절단 알고리듬)

  • Kim, Dong-Hun;Shin, Ha-Yong;Park, Se-Youn;Yi, Il-Lang;Kwon, Jang-Hyuk;Kwon, Oh-Joon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.450-458
    • /
    • 2008
  • Recently, Cartesian grid approach has been popular to generate grid meshes for complex geometries in CFD (Computational Fluid Dynamics) because it is based on the non-body-fitted technique. This paper presents a method of an octree generation and boundary cell clipping using section curves for fast octree generation and elimination of redundant intersections between boundary cells and triangles from 3D triangular mesh. The proposed octree generation method uses 2D Scan-Converting line algorithm, and the clipping is done by parameterization of vertices from section curves. Experimental results provide octree generation time as well as Cut-cell clipping time of several models. The result shows that the proposed octree generation is fast and has linear relationship between grid generation time and the number of cut-cells.

Appearing Condition of Breaking Waves at Infant Stage and Numerical Simulation (쇄파의 초기단계 생성조건과 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.873-879
    • /
    • 2009
  • The steady breakers at an infant stage are investigated through the numerical simulation. The appearing condition and characteristics of the sub-breaking waves are reviewed by analysing bow waves. The instability analysis is possibly done through the relationship between the free-surface curvature and circumferential force, which is obtained from the momentum equations. Navier-Stokes equations are solved by a finite difference method where the body-fitted coordinate system, the wall function and the advanced mesh system are invoked. The numerical result shows that the gradient of M/$U_s$ is greatly influenced by the Froude number and the decrease of M/$U_s$ indicates that the flows are unstable. Additionally flows with plunging or spilling are simulated successfully, but the application of breakers to the severely broken wave still remains to be settled in the future.

Extended-FEM for the solid-fluid mixture two-scale problems with BCC and FCC microstructures

  • Sawada, Tomohiro;Nakasumi, Shogo;Tezuka, Akira;Fukushima, Manabu;Yoshizawa, Yu-Ichi
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.45-68
    • /
    • 2009
  • An aim of the study is to develop an efficient numerical simulation technique that can handle the two-scale analysis of fluid permeation filters fabricated by the partial sintering technique of small spherical ceramics. A solid-fluid mixture homogenization method is introduced to predict the mechanical characters such as rigidity and permeability of the porous ceramic filters from the micro-scale geometry and configuration of partially-sintered particles. An extended finite element (X-FE) discretization technique based on the enriched interpolations of respective characteristic functions at fluid-solid interfaces is proposed for the non-interface-fitted mesh solution of the micro-scale analysis that needs non-slip condition at the interface between solid and fluid phases of the unit cell. The homogenization and localization performances of the proposed method are shown in a typical two-dimensional benchmark problem whose model has a hole in center. Three-dimensional applications to the body-centered cubic (BCC) and face-centered cubic (FCC) unit cell models are also shown in the paper. The 3D application is prepared toward the computer-aided optimal design of ceramic filters. The accuracy and stability of the X-FEM based method are comparable to those of the standard interface-fitted FEM, and are superior to those of the voxel type FEM that is often used in such complex micro geometry cases.

Size selectivity of round traps for greenling (Hexagrammos otakii) in the western sea of Korea (원통형 통발에 대한 서해안 쥐노래미 (Hexagrammos otakii)의 망목선택성)

  • 신종근;박해훈
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.174-180
    • /
    • 2003
  • This study investigated the size selectivity of the round traps for greenling (Hexagrammos otakii) in the western sea of Korea. The selection curve for the greenling from the experiments on Oct. 2000 and Ar. 2001 was fitted by Kitahara's method to a polynomial equation and two parameter logistic selection curve. The selectio curve of the latter was more reasonable than that of the former. The equation of selectivity curve obtained using a logistic function with least square method was , s(R)=1/1+exp(-1.1169R+6.4565), where R=1/m, and 1 and m are total length and mesh size, respectively. The size selectivity curve showed that the current regulated mesh size(35mm) in case of the round trap was close to the L50 (37.0mm) of the selection curve for the biological minimum length (21.4cm) of the greenling.

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

The establishment of IB-SEM numerical method and verification of fluid-solid interaction

  • Wang, Jing;Li, Shu-cai;Mao, Xuerui;Li, Li-ping;Shi, Shao-shuai;Zhou, Zong-qing
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1161-1171
    • /
    • 2018
  • The interaction between particles and fluid was investigated by IB-SEM numerical method which is a combination of combing the spectral/hp element method and the rigid immersed boundary method. The accuracy of this numerical method was verified based on the computed results with the traditional body-fitted mesh in numerical simulation of the flow through the cylinder. Then the governing equations of particles motion and contact in fluid are constructed. The movement of the particles and the interaction between the fluid and the particles are investigated. This method avoided the problem of low computational efficiency and error caused by the re-division of the grid when the solids moved. Finally, the movement simulation of multi particles in the fluid was carried out, which can provide a completely new numerical simulation method.

EXPONENTIALLY FITTED NUMERICAL SCHEME FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS INVOLVING SMALL DELAYS

  • ANGASU, MERGA AMARA;DURESSA, GEMECHIS FILE;WOLDAREGAY, MESFIN MEKURIA
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.419-435
    • /
    • 2021
  • This paper deals with numerical treatment of singularly perturbed differential equations involving small delays. The highest order derivative in the equation is multiplied by a perturbation parameter 𝜀 taking arbitrary values in the interval (0, 1]. For small 𝜀, the problem involves a boundary layer of width O(𝜀), where the solution changes by a finite value, while its derivative grows unboundedly as 𝜀 tends to zero. The considered problem contains delay on the convection and reaction terms. The terms with the delays are approximated using Taylor series approximations resulting to asymptotically equivalent singularly perturbed BVPs. Inducing exponential fitting factor for the term containing the singular perturbation parameter and using central finite difference for the derivative terms, numerical scheme is developed. The stability and uniform convergence of difference schemes are studied. Using a priori estimates we show the convergence of the scheme in maximum norm. The scheme converges with second order of convergence for the case 𝜀 = O(N-1) and for the case 𝜀 ≪ N-1, the scheme converge uniformly with first order of convergence, where N is number of mesh intervals in the domain discretization. We compare the accuracy of the developed scheme with the results in the literature. It is found that the proposed scheme gives accurate result than the one in the literatures.

Size selectivity of gill net for male snow crab, Chionoecetes opilio (자망에 대한 대게 수컷의 망목 선택성)

  • 박창두;안희춘;조삼광;백철인
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.143-151
    • /
    • 2003
  • A series of fishing experiments was carried out in the waters off the east coast of Korea from January, 2002 to March, 2003, using gill nets of different mesh sizes (m = 180, 210, 240, 270, and 300 ㎜) to determine the size selectivity of gill net for male snow crab Chionoecetes opilio. The maximum carapace length (RL) of each male snow crab caught in the fishing experiment was measured. The master curve of mesh selectivity was estimated by applying the extended Kitahara's method. Two kinds of functional models, quadratic function and cubic function were used to express logarithmic selectivity curve and were fitted to the data using the method of least squares. The obtained results were summarized as follows; 1. The cubic function of asymmetry was chosen to determine the selectivity curve of gill net for male snow crab from the model deviance comparison. 2. The result of size selectivity showed that the catch number of small male crab was getting decreased according to the increase of mesh size. 3. The optimum value (RL/m) was 0.549 and the RL/m was estimated to be 0.281, 0.296, and 0.356 when the retention probability were 0.2, 0.25 and 0.5, respectively.

Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Quinoline Yellow by Granular Activated Carbon (입상 활성탄에 의한 Quinoline Yellow의 흡착에 대한 평형, 동력학 및 열역학에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Batch adsorption studies were carried out for equilibrium, kinetic and thermodynamic parameters for quinoline yellow adsorption by granular activated carbon ($8{\times}30mesh$, $1,578m^2/g$) with varying the operating variables like initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. From estimated Langmuir constant ($R_L=0.0730{\sim}0.0854$), Freundlich constant (1/n = 0.2077~0.2268), this process could be employed as effective treatment for removal of quinoline yellow. From calculated Temkin constant (B = 15.759~21.014 J/mol) and Dubinin-Radushkevich constant (E = 1.0508~1.1514 kJ/mol), this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with $r^2$ > 0.99 for all concentrations and temperatures. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy value (+35.137 kJ/mol) and enthalpy change (35.03 kJ/mol) indicated endothermic nature of the adsorption process. Entropy change (+134.38 J/mol K) showed that increasing disorder in process. Free energy change found that the spontaneity of process increased with increasing adsorption temperature.

The Distributions of Copepods and Chaetognaths in the Southern Waters of Korea and Their Relationship to the Characteristics of Water Masses (한국 남해의 요각류 및 모악류의 분포와 수괴특성)

  • PARK Joo-Suck;LEE Sam-Seuk;KANG Young-Shil;LEE Byung-Don;Hun Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.245-252
    • /
    • 1990
  • The distributions of copepods and chaetognaths in waters off the southern coast of Korea were investigated to evaluate their reliability as indicator species of different water masses. The samples for this study were collected vertically from about 5m above the bottom at 28 stations along 8 transects in three different months, February, April, and August, 1988. The sampling gear used was 0.45-meter NORPAC plankton net fitted with 0.33mm mesh. Acartia clausi, Centropages abdominalis, and Sagitta crassa were found to be reliable indicator species of neritic cold waters; Pleuromamma gracilis, Undinula darwini, Calocalanus plumulosus, Calanopia elliptica, and Sagitta enflata were of oceanic warm waters; Temora discaudata and Centropages furcatus were of neritic warm waters. According to the cluster analyses of the species found, the distinctive area in February was divisible into two regions or water masses, the coastal and off-shore regions; in April, however, it was divisible into four regions. In August, it was divisible into three areas, further indicating the strength of the Kuroshio tributaries pushing toward the coast.

  • PDF