• Title/Summary/Keyword: Fission product release

Search Result 43, Processing Time 0.02 seconds

SUMMARY OF THE RESULTS FROM THE PHEBUS FPT-1 TEST FOR A SEVERE ACCIDENT AND THE LESSONS LEARNED WITH MELCOR

  • Park, Jong-Hwa;Kim, Dong-Ha;Kim, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.535-550
    • /
    • 2006
  • The objectives of this paper are twofold to summarize the new findings and confirmed results from the Phebus FPT-1 experimental data and to report useful information to MELCOR users regarding the better use of MELCOR. For the core damage behavior, the early stage of a melt progression was predicted well; however, the late phase models, concerned with fuel dissolution, oxide cladding failure, fuel slumping, rubble debris heat up, effects of burn-up fuel, and so on, still showed limitations in MELCOR. For the fission product behavior, the comparison showed unexpected phenomena, various limitations, unresolved issues, and even absence of models. The issues summarized in this study have revealed the main areas where our endeavors need to be intensified in order to improve our understanding of severe accident phenomena. From the analysis of the Phebus FPT-1 test results, not only new core damage features, such as foaming or core expansion, but also possible new fission product release patterns due to effects from a high burn-up fuel have raised alternative challenging phenomena that should be solved in the next severe accident research phase.

FISSION PRODUCT RELEASE ASSESSMENT FOR A LARGE BREAK LOCA IN CANDU REACTOR LOADED WITH CANFLEX-NU FUEL BUNDLES

  • Oh, Dirk-Joo;Ohn, Myeong-Yong;Lee, Kang-Moon;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.484-488
    • /
    • 1997
  • Fission product release (FPR) assessment for 100% reactor outlet header (ROH) break in CANDU reactor loaded with CANFLEX-NU fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The fuel failure thresholds for the CANFLEX and standard bundle elements are very similar. All the sheaths at the corresponding fuel failure thresholds for the CANFLEX and standard bundles fail due to the significant cracks in the surface oxide, except those for the CANFLEX inner element at burnups of 220 to 240 MW.h/kg(U), which fail due to the excessive diametral strain. The fuel failure analysis predicts that the number of failed fuel elements for the CANFLEX bundle case is none, while that for the standard bundle case is 1827. The total (gap plus bound) I-131 releases for the CANFLEX and standard bundles are none and 5889 TBq, respectively The significant reduction of the number of failed fuel elements and FPR for the CABFKEX fuel bundle is attributed to the lower linear power of the CANFLEX fuel bundle compared with the standard fuel bundle.

  • PDF

Key Findings from the Artist Project on Aerosol Retention in a Dry Steam Generator

  • Dehbi, Abdelouahab;Suckow, Detlef;Lind, Terttaliisa;Guentay, Salih;Danner, Steffen;Mukin, Roman
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.870-880
    • /
    • 2016
  • A steam generator tube rupture (SGTR) event with a stuck-open safety relief valve constitutes one of the most serious accident sequences in pressurized water reactors (PWRs) because it may create an open path for radioactive aerosol release into the environment. The release may be mitigated by the deposition of fission product particles on a steam generator's (SG's) dry tubes and structures or by scrubbing in the secondary coolant. However, the absence of empirical data, the complexity of the geometry, and the controlling processes have, until recently, made any quantification of retention difficult to justify. As a result, past risk assessment studies typically took little or no credit for aerosol retention in SGTR sequences. To provide these missing data, the Paul Scherrer Institute (PSI) initiated the Aerosol Trapping In Steam GeneraTor (ARTIST) Project, which aimed to thoroughly investigate various aspects of aerosol removal in the secondary side of a breached steam generator. Between 2003 and 2011, the PSI has led the ARTIST Project, which involved intense collaboration between nearly 20 international partners. This summary paper presents key findings of experimental and analytical work conducted at the PSI within the ARTIST program.

Post Test Analysis of the Phebus FPT1 Experiment

  • Cho, Song-Won;Park, Jong-Hwa;Kim, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.88-103
    • /
    • 1999
  • The purposes of this study are to understand the severe accident phenomena, to establish the simulation method for the experimental test, and to assess the current models in MELCOR for future improvement. This paper presents the results of the PHEBUS FPT1 post test analysis using MELCOR computer code, version 1.8.4. The entire PHEBUS facility has been modeled; the core, the primary circuit including the steam generator, and the containment vessel. Both the thermal hydraulic and the fission product behavior have been investigated. The code simulation results of the thermal hydraulic behavior show good agreement with the experimental data, The fission product release and transport are calculated using the CORSOR models in MELCOR code and the results will be compared with the experiment when the experimental data are available.

  • PDF

Experimental simulation of activity release from leaking fuel rods

  • Somfai, Barbara;Hozer, Zoltan;Nagy, Imre
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1148-1153
    • /
    • 2018
  • The Leaking Fuel Experiment test facility was designed to simulate the activity release from spent leaking fuel rods under steady state and transient conditions in the spent fuel pool. The experimental rig included an electrically heated fuel rod with different defects and a cooling system. The fission product transport was simulated by potassium-chloride. The conductivity changes of the water in the cooling system were measured to provide information about the amount of released solution. Defects of different sizes and positions were applied, together with a wide range of rod powers to simulate decay heat. The produced data can be used for predicting the activity release from leaking fuel under storage conditions and for the interpretation of fuel examination procedures.

KAFEPA: A Computer Code for CANDU PHWR-Fuel Performance Analysis under Reactor Normal Operating Condition (KAFEPA: 월성로형 핵연료봉의 정상상태 성능분석용 전산코드)

  • Suk, Ho-Chun;Woan Hwang;Sim, Ki-Seob
    • Nuclear Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.180-185
    • /
    • 1987
  • A computer code, KAFEPA, for analysing in-reactor behavior of a PHWR-fuel rod under reactor normal operating condition was developed. This code, KAFEPA, corresponds to the ELESIM code that was developed for the same purpose by AECL. Even though the KAFEPA originated from the ELESIM, it contains more accurate and theoretical models in comparison with the ELESIM, such as fission gas release model, in-reactor densification model and a new database for neutron flux depression across the radial direction in a fuel pellet. The KAFEPA code was verified by comparing the predictions with 22 measurements of fission product gas release. The predictions of the KAFEPA was well agreed with the experimental data.

  • PDF

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Lee, Byeonghee;Kim, Sung-Il;Ha, Kwang Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2702-2713
    • /
    • 2022
  • A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.

Evaluation of Fuel Cladding Failures from the Fission Product Activities in the Reactor Coolant (원자로 냉가수내의 핵분열생성물 방사에 의한 핵연료피복관 파손 평가)

  • Ho Ju Moon;Sung Ki Chae
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.169-179
    • /
    • 1984
  • An efficient procedure of evaluating the fuel cladding failures occurring in the normal operations of typical PWR's has been investigated through the analysis of fission product(FP) activities in the reactor coolant using an analytical model, FIPREL code. Performed by this code is an extensive study on the sensivities of FP activities to such physical parameters as enrichment, turnup, and operation temperature of failed fuel rod as well as the effective failure size quantified in terms of the magnitude of gap release coefficient. The results of study are generally in agreement with those by PROFIP method. In the presence of tramp uranium the portion of activities released from failed rod is separated by an iterative calculation based on the activity ratios of fission nuclides chemically more stable than iodines. Obtained are the linear power density and the number of failed rods, the effective failure size, and the mass of tramp uranium. The operation experiences of 4 cycles of Kori Unit 1 are analyzed and the results show that the model is highly reliable for the survey and evaluation of fuel rod conditions during reactor operations.

  • PDF