• Title/Summary/Keyword: Fission Products

Search Result 178, Processing Time 0.019 seconds

Acid-Catalyzed Benzidine Rearrangement of Unsymmetrical Hydrazoaromatics

  • 박군하;박문규;조윤환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1090-1094
    • /
    • 1998
  • Acid-catalyzed benzidine rearrangements of new unsymmetrical diazanes 1-3, prepared from the reduction of corresponding diazenes 4-6, were carried out in ethanolic solutions. The results are as follows; rearrangement of (3-carbomethoxyphenyl)(3-methoxyphenyl)diazane 1 gave 4,4'-diamino-2-carbomethoxy-2'-methoxybiphenyl 12 (p-benzidine type) in 71% and 10-amino-3-methoxyphenanthridin-6(5H)-one 13, 8-amino-3-methoxyphenanthridin-6(5H)-one 14 in 7.1% and 3.4%, respectively. Product 13 and 14 were formed by the condensation reaction of primarily formed o-benzidine and diphenyline type product, respectively. (5-Carbomethoxy-2-chlorophenyl)(4-methoxyphenyl)diazane 2 and (5-carbomethoxy-2-methylphenyl)(4-methoxyphenyl)diazane 3 underwent mainly disproportionations to give fission amines and corresponding diazenes in about 53% and 40% yields, respectively. The results obtained from the rearrangements of diazanes 1-3 indirectly indicated the importance of disproportionations to understand the benzidine rearrangements. The structures of benzidine rearrangement products were determined by usual NMR techniques such as DEPT, 2D H-H COSY, H-C COSY, 2D NOESY, and Gaussian function multiplication.

NEUTRON CROSS SECTION DATA LIBRARY FOR PD-105, AG-109, XE-131 AND CS-133

  • LEE Y. D.;CHANG J. H.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • The neutron induced nuclear cross-section data for Pd-105, Ag-109, Xe-131, and Cs-133 were calculated and evaluated from an unresolved energy to 20 MeV. The energy dependent optical model potential parameters were extracted based on recent experimental data and applied up to 20 MeV. A spherical optical model and a statistical model for the equilibrium energy, and a multistep direct and a multistep compound model for the pre-equilibrium energy were used in the calculation. The direct capture model was recently introduced for fast neutron capture. The theoretically calculated cross-sections were compared with the experimental data and the evaluated files. The total and capture cross-sections calculated using the model were in good agreement with the reference experimental data. The evaluated cross-section results were compiled in ENDF-6 format and merged with the resonance component, already adopted in the ENDF/B-VI release 8. New data library files covering from thermal to 20 MeV were created. They are at the preliminary stage of an ENDF/B- VII release.

Neutron Cross Section Evaluation on Pr-141, Nd-143, Nd-145, Sm-147 and Sm-149

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.370-381
    • /
    • 2002
  • The neutron induced nuclear data for Pr-141, Nd-143, Nd-145, Sm-147 and Sm-149 were calculated and evaluated from 10 keV to 20 MeV. The energy dependent optical model potential parameters were extracted based on the recent experimental data and applied up to 20 MeV. The s-wave strength function was calculated. Spherical optical model , statistical model in equilibrium energy, multistep direct and multistep compound model in pre-equilibrium energy and direct capture model were introduced in Empire calculation. The theoretically calculated cross sections were compared with the experimental data and the evaluated files. The model calculated total and capture cross sections were in good agreement with the reference experimental data. The capture cross sections in pre-equilibrium were enhanced in recent released Empire version. The evaluated cross section results were compiled to ENDF-6 format and will improve the ENDF/B-Vl.

FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

  • Kim, Weon-Ju;Kim, Daejong;Park, Ji Yeon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.565-572
    • /
    • 2013
  • The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade $SiC_f/SiC$ composites are briefly reviewed. A CVI-processed $SiC_f/SiC$ composite with a PyC or $(PyC-SiC)_n$ interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

Contribution of production and loss terms of fission products on in-containment activity under severe accident condition for VVER-1000

  • Jafarikia, S.;Feghhi, S.A.H.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.125-137
    • /
    • 2019
  • The purpose of this paper is to study the source term behavior after severe accidents by using a semi-kinetic model for simulation and calculation of in-containment activity. The reactor containment specification and the safety features of the containment under different accident conditions play a great role in evaluating the in-containment activity. Assuming in-vessel and instantaneous release of radioactivity into the containment, the behavior of in-containment isotopic activity is studied for noble gasses (Kr and Xe) and the more volatile elements of iodine, cesium, and aerosols such as Te, Rb and Sr as illustrative examples of source term release under LOCA conditions. The results of the activity removal mechanisms indicates that the impact of volumetric leakage rate for noble gasses is important during the accident, while the influence of deposition on the containment surfaces for cesium, mainly iodine isotopes and aerosol has the largest contribution in removal of activity during evolution of the accident.

Reprocessing of spent nuclear fuel in carbonate media: Problems, achievements, and prospects

  • Stepanov, Sergei I.;Boyarintsev, Alexander V.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2339-2358
    • /
    • 2022
  • The review discusses various alternative approaches for spent nuclear fuel (SNF) reprocessing in aqueous carbonate media. The main stages, schemes, and methods of the most well-known and well-described processes for reprocessing SNF and some high-level radioactive waste using carbonate systems developed by research groups in Japan, the United States of America, the Republic of Korea, and the Russian Federation described and compared. The main advantages of such methods are outlined compared to the SNF reprocessing in nitric acid media. The levels of development and proximity of the designed processes to the industrial implementation are shown. The main principle achievements, prospects, and routes for the refinement of such methods for the technology of SNF reprocessing and handling of high-level radioactive waste formulated.

Analyses on the recriticality and sub-critical boron concentrations during late phase of a severe accident of pressurized water reactors

  • Yoonhee Lee;Yong Jin Cho;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3241-3251
    • /
    • 2023
  • The potential for recriticality and sub-critical boron concentrations is analyzed during the relocation of the fuel rods in the assembly, which we call late phase of a severe accident, via coupling between MELCOR and whole-core Monte Carlo analyses by Serpent 2. The recriticality, initiated during the early phase, is found to maintain when the fuel assemblies containing intact fuel rods are submerged by the cooling water. It is also found that the effect of the negative reactivity insertion via remaining fission products in the fuel debris increases as the burnup increases. The sub-critical boron concentrations during the late phase are found to be 76~544 ppm lower than those during the early phase. Therefore, it can be concluded that the boron concentration that prevents recriticality not only during the early phase but also during the late phase is the sub-critical boron concentration during the early phase.

A Study on Corrosion Product Behavior Prediction for Domestic PWR Primary System by using CRUDTRAN (CRUDTRAN을 이용한 국내 PWR 1차계통내 부식생성물 거동예측에 관한 연구)

  • Song, Jong Soon;Yoon, Tae-Bin;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.253-262
    • /
    • 2015
  • Radionuclide deposited on the surface of several internal and external systems in a nuclear power plant is created by the activation of corrosion products from nuclear reactor structural materials and fission products. Especially, the constant contact between water and the surface corrodes the inside where primary system makes coolants and corrosion products mixed. Also, these are circulated along the systems. For comparing models, CRUDTRAN, DISER, MIGA-RT and CPAIR codes are analyzed to predict the quantity of radionuclide and corrosion product of primary reactor that are used at the stage of designing. The corrosion products behavior of domestic PWR primary system was predicted by using CRUDTRAN. This study aims to increase the reliability of corrosion product evaluation model by comparing the actual values and calculated values with the data of a Westing House-type Nuclear Power Plant.

Separation and Purification for the Determination of Samarium and its Isotopes in PWR Spent Nuclear Fuels (PWR 사용후핵연료 중 Sm 동위원소 정량을 위한 분리 및 정제)

  • Kim, Jung Suk;Jeon, Young Shin;Choi, Kwang Soon;Park, Soon Dal;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.291-299
    • /
    • 2001
  • A method of separation and purification of Sm for quantitation of Sm isotopes from various fission products in PWR spent nuclear fuels has been studied. Simulated solution containing inactive metal ions(Cs, Ba, Gd, Eu, Sm and Nd) in place of radioactive fission products was prepared. Sm was separated with 0.5 M $HNO_3$/80% MeOH after washing with 1 M $HNO_3$/90% MeOH on AG $1{\times}8$, anion exchange resin. Sm was purified on cation exchange resin, AG $50W{\times}8$, pretreated with 0.2 M alpha-hydroxisobutyric acid(pH 4.5-4.6) to remove Ba causing isobaric effect Sm from PWR spent fuel. As a result of mass spectrometric measurement, eluted Sm portion did not include isobars form other elements such as Gd, Eu, Pm, Nd and BaO. The contents of Sm and its isotopes($^{147}Sm$, $^{148}Sm$, $^{149}Sm$, $^{150}Sm$, $^{151}Sm$, $^{152}Sm$ and $^{154}Sm$) in spent fuel were determined by isotope dilution mass spectrometric method spiking $^{154}Sm$.

  • PDF

Criticality Uncertainty Analysis of Spent Fuel Transport Cask applying Burnup Credit (연소도이득효과(BUC) 적용 사용후핵연료 운반용기의 임계 불확실도 평가)

  • Lee, Gang-Ug;Park, Jea-Ho;Kim, Do-Hyung;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.191-198
    • /
    • 2011
  • In general, conventional criticality analyses for spent fuel transport/dry storage systems have been performed based on assumption of fresh fuel concerning the potential uncertainties from number density calculation of Transuranic and Fission Products in spent fuel. However, because of economic loss due to the excessive criticality margin, recently the design of transport/dry storage systems with Burnup Credit(BUC) application has been actively developed. The uncertainties in criticality analyses on transport/storage systems with BUC technique show strong dependance upon initial enrichment and burnup rate, whereas those in the conventional criticality evaluation based on fresh fuel assumption do not show such a dependance. In this study, regulatory-required uncertainties of the criticality analyses for BK 26 Cask, which is conceptually designed spent fuel transport cask with BUC corresponding to the limiting circumstances on nuclear power plants in Korea, are evaluated as a function of initial enrichment and burnup rate. Results of this study will be used as basic data for spent fuel loading curve of BK 26 Cask.