• Title/Summary/Keyword: Fishing Lamps

Search Result 28, Processing Time 0.024 seconds

Change of fishing power index by technological development in the offshore squid jigging fishery (근해오징어채낚기어업에서 어로기술발달에 따른 어획성능지수 변동)

  • OH, Taeg-Yun;SEO, Young-Il;CHA, Hyung-Kee;JO, Hyun-Su;AN, Young-Su;LEE, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.3
    • /
    • pp.224-230
    • /
    • 2018
  • Squid is one of the important fisheries resources in Korea. Therefore, squid has been designated and managed as a target species of total allowable catch (TAC) since 2007, but the catch amount is gradually decreasing. The analysis was conducted to identify the change of relative fishing power index to develop the vessel and gear technology that may have improved the fishing efficiency of the offshore squid jigging fishery from 1960s to 2010s. Gross tonnage per fishing vessel increased with the increase in size until 1990, but then gradually decreased to 41.0 tons in 2000 and 37.1 tons in 2010. The illuminating power (energy consumption) by fishing lamps increased to 180 kW in 2005 and stabilized to 120 kW in 2015. Jigging machine started to be supplied to fishing vessels from the early 1970s, and fish finders began to be supplied in the early 1980s and gradually increased. Therefore, the relative fishing power index in the offshore squid jigging fishery increased from 1.0 in 1980 to 1.1 in 1990, to 3.5 in 2000 and to 2.5 in 2010, but the increment rate slowed down gradually. The results are expected to contribute to reasonable fisheries stock management.

Characteristics of Spectral Irradiance Based on the Distance from the Light Source and Operating Method for Fishing Lamps with a Combined Light Source (이종(異種) 광원 조합에 의한 복수 광원의 분광 방사특성과 광달(光達) 거리 및 집어등 운용방법)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.711-720
    • /
    • 2009
  • Characteristics of spectral irradiance based on the distance from the light source, which combined metal halide lamp and high-luminance light-emitting diode (LED) light, were studied to investigate a suitable operating method for fishing lamps of the next generation. A 380-780 nm wavelength radiation was superior when using 1 W electrical power in the order of metal halide lamp, blue LED, white LED, and combined LED lights. The wavelengths at which the irradiance was at a maximum were fixed to 581 nm for the light source, which was combined for each ratio. If the irradiance characteristics at 300-1100 nm wavelengths were set as 100%, the irradiance rates at 400-599 nm were 100%, 72.7%, 88.9%, and 69.5% for the blue, white, combined LED lights, and metal halide lamp, respectively. This indicated that the color rendering of the LED lights was dependent on the metal halide lamp light source. When the horizontal profiles (450-550 nm wavelength) of irradiances were compared to a different type of light source in the ratio white LED: combined LED lights: blue LED: metal halide lamp, the irradiated area of more than $0.01\;{\mu}mol/s/m^2/nm$ was in the ratio 1.0 : 1.3 : 1.7 : 37.3, respectively. Based on the radiation characteristics and irradiance according to the distance from the light source, LED lights have an estimated economic efficiency if used before and after operation of a metal halide lamp.

Transmittance properties of fishing lamp in distant-water squid jigging vessel (원양 오징어채낚기 집어등 불빛의 수중 투과 특성)

  • Jo, Hyun-Su;Oh, Taeg-Yun;Kim, Yeong-Seung;Moon, Dae-Yeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.4
    • /
    • pp.228-233
    • /
    • 2006
  • The transmittance properties of fishing lamp of the squid jigging vessel was investigated during nighttime operations in the Northwest Pacific on 21 and 29 September 2005. The metal halide lamps of white color($2.0kW{\times}168$) in the air and metal halide lamp of white color($10.0kW{\times}1$) in the underwater were used as a fishing lamp for gathering squids. The relative irradiance of metal halide lamp in the air showed peak in 850nm of wave length. The relationship between underwater illuminance(Y) and water depth(X) of metal halide lamp light in the observation areas is represented, $Y=84.137e^{-0.1105X},\;R^2=0.9974$. The distribution of underwater illuminance of measure points St. 1-5 showed low value of 0.11x in 80m depth.

Design and performance estimation of fish-luring system using the water cooling typed LED lamp (채낚기 어선용 수랭식 LED 집어시스템의 설계 및 성능평가)

  • Bae, Bong-Seong;An, Heui-Chun;Kwon, Ki-Jin;Park, Seong-Wook;Park, Chang-Doo;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • A fishing lamp is fishing gear to gather fish in the night. But the cost of oil which is used to a light fishing lamp, goes significantly up to almost one hundred million won for 50 tonnage vessels and forty million won in case of vessels less than 10 tonnages. This cost has almost taken 30.40% of total fishing costs. As oil price increases, the business condition of the fishery gets worse and worse. Therefore, it is very urgent to develop an economical fishing lamp, to solve the problem of fishery's business difficulty. This research aims at developing a fishing lamp for squid jigging fishery and hairtail angling fishery using the LED, which has excellent efficiency and durability. One fishing lamp has about 160Watt capacity and five fishing lamps are installed one aluminium panel in which sea water flows to emit generated heat from LED to outside. Developed fishing lamp lights to an effective direction of jigging and angling operation. This fishing lamp can be controlled to light the direction of fish shoal because the aluminium panel can be controlled to up and down direction. The wave length of fishing lamp has white and blue color. White color light is to gather fish shoal of horizontal direction and blue color light is to gather fish shoal of vertical direction. After development of this fishing lamp, 60.110 units are established on the boat, and operated fishing. Consequently, in the case of squid jigging, spent energy was reduced to 39%, in the case of hairtail angling, 68% of spent energy was reduced. And the catch was more than another boat.

The Optical Characteristics of 240 W High Power LED Fish Luring Lamp (240W급 고출력 LED 집어등의 광학적 특성)

  • Bae, Jae-Hyun;An, Heui-Chun;Kim, Sang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.681-687
    • /
    • 2013
  • This study analyzed characteristics of 240 W high power LED lamps by comparing with those of traditional metal halide lamps. In addition, it analyzed the propriety of LED lamps as a source of light, considering seawater transmission characteristics. When Applying white LED package with the color temperature color temperature of 6500K, a 240W-LED fishing lamp has a characteristics of the luminous angle to be expanded to ${\pm}45^{\circ}$, the illumination change was improved to 0.8, as well as the luminance efficiency was improved to 98.8lm/W. As results of comparison between one 1,500W-metal halide lamp and four 240W-LED lamp with considering a seawater transmission and a luminous efficiency of scotopic vision, the radiant flux of two lamps were almost equal level at 50m depth and the luminous flux was 5% higher LED lamp than metal-halide lamp even if only applying the luminous efficiency of scotopic vision. As the luminous flux of LED lmap was 14% higher than that of metal-halide lamp with applying the luminous efficiency of scotopic vision to radiant flux at 50m depth, so LED fishing lamp was verified to alternative possibility of metal-halide lamp.

Design and Fabrication of an Energy Saving LED-Fishing Lamp (에너지 절감형 LED 집어등의 설계 및 제작)

  • Choi, Sung-Kuk;Kim, Sun-Jae;Park, Dae-Won;Kil, Gyung-Suk;Choi, Chul-Young;Song, Sang-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.515-521
    • /
    • 2010
  • This paper dealt with the design and fabrication of an energy saving light emitting diode (LED) fishing lamp. Most fishes such as a squid, horse mackerel, mackerel, sardine and scabbard fish have characteristics for phototaxis and fishing lamps have promoted the fishery efficiency using their photo-reaction. In these days, metal halide lamp (MHL) as the fishing lamp, which consumes 1.5 kW and radiates harmful ultraviolet rays are mainly used. To develop the LED-fishing lamp, the penetration depth in sea water and the photo-reaction of a squid as light wavelength were studied. The experimental results showed the both characteristics were existed in blue color around 470 nm. Based on the results, we manufactured a 160 W and blue LED-fishing lamp which is consume about one-nine of 1.5 kW MHL. As energy saving effect, the use of LED-fishing lamp can reduce 128 kWh per an hour which is correspond to $CO_2$ of 86 kg for a 22ton-fishing boat equipped with 80-1.5 kW MHL. Now, the prototype LED fishing lampsare being evaluated on two fishing boats.

The study on the Anchovy's (Engraulis japonica) reaction to several light colors in a tank (수조에서 여러 가지 색광에 대한 멸치의 반응 연구)

  • Bae, Bong-Seong;Cho, Sam-Kwang;Cha, Bong-Jin;Park, Seong-Wook;An, Heui-Chun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.327-337
    • /
    • 2011
  • This study was conducted to develop energy-efficient LED lamps with an excellent fishing performance for an anchovy scoop net by comparing the functions of 6 different lamps- incandescent, blue LED, green LED, white LED, yellow LED and red LED lamp. We used incandescent and red LED lamps only for the initial test and then excluded because those showed the lowest herding capacity. According to the result, yellow LED showed lower herding capacity in comparison with the blue, green and white one. Although the herding performance of the blue, green and white LED was similar in almost tests, herding speed to the each light was different. The anchovies were gathered into the blue LED as the speed of 39.88cm/s that was the fastest. Green LED was the second as the speed of 33.28cm/s. White LED was the slowest as the speed of 26.73cm/s. We will have field tests because we found the result that yellow LED's herding performance was better than green LED's for 5 seconds comparing after starting in some tests.

Distribution patterns of the Japanese common squid, Todarodes pacificus attracted around the luring lamp on the jigging boat (채낚기 집어등 어선 주변에 유집된 살오징어, Todarodes pacificus의 분포 패턴)

  • BAE, Jae-Hyun;LEE, Kyounghoon;JO, Hyeon-Jeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.276-280
    • /
    • 2016
  • This study investigated luring distributions by water layer of common squid which were targeted by angling fishing vessels equipped with LED and metal-halide lamps using a scientific echosounder with a 120 kHz frequency in order to develop energy-effective underwater fish aggregation devices. In the analysis, angles of a transducer were changed from $0^{\circ}$ to $45^{\circ}$ and were rotated every $10^{\circ}$ horizontally. It was shown that common squid were densely distributed from the surface to 40 m and they were also distributed in directions of $10^{\circ}{\sim}+30^{\circ}$, $-30^{\circ}{\sim}-60^{\circ}$, and $-120^{\circ}{\sim}-130^{\circ}$with the head of vessel as the center. Comparative results of angles of transducer on acoustical densities of common squid distributing in 21~40 m water depth showed an average $101.8m^2/nm^2$ in vertical direction of $0^{\circ}$, $12.3m^2/nm^2$ in angle of $30^{\circ}$, and $42.4m^2/nm^2$ in angle of $45^{\circ}$, respectively. It implied that more considerations on acoustic scattering strength by incidence angle direction of the transducer and swimming oriental angle direction of common squid would be required.