• Title/Summary/Keyword: Fisheye Camera

Search Result 53, Processing Time 0.026 seconds

3D Analysis of Scene and Light Environment Reconstruction for Image Synthesis (영상합성을 위한 3D 공간 해석 및 조명환경의 재구성)

  • Hwang, Yong-Ho;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.6 no.2
    • /
    • pp.45-50
    • /
    • 2006
  • In order to generate a photo-realistic synthesized image, we should reconstruct light environment by 3D analysis of scene. This paper presents a novel method for identifying the positions and characteristics of the lights-the global and local lights-in the real image, which are used to illuminate the synthetic objects. First, we generate High Dynamic Range(HDR) radiance map from omni-directional images taken by a digital camera with a fisheye lens. Then, the positions of the camera and light sources in the scene are identified automatically from the correspondences between images without a priori camera calibration. Types of the light sources are classified according to whether they illuminate the whole scene, and then we reconstruct 3D illumination environment. Experimental results showed that the proposed method with distributed ray tracing makes it possible to achieve photo-realistic image synthesis. It is expected that animators and lighting experts for the film and animation industry would benefit highly from it.

  • PDF

Vision-based Mobile Robot Localization and Mapping using fisheye Lens (어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑)

  • Lee Jong-Shill;Min Hong-Ki;Hong Seung-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.256-262
    • /
    • 2004
  • A key component of an autonomous mobile robot is to localize itself and build a map of the environment simultaneously. In this paper, we propose a vision-based localization and mapping algorithm of mobile robot using fisheye lens. To acquire high-level features with scale invariance, a camera with fisheye lens facing toward to ceiling is attached to the robot. These features are used in mP building and localization. As a preprocessing, input image from fisheye lens is calibrated to remove radial distortion and then labeling and convex hull techniques are used to segment ceiling and wall region for the calibrated image. At the initial map building process, features we calculated for each segmented region and stored in map database. Features are continuously calculated for sequential input images and matched to the map. n some features are not matched, those features are added to the map. This map matching and updating process is continued until map building process is finished, Localization is used in map building process and searching the location of the robot on the map. The calculated features at the position of the robot are matched to the existing map to estimate the real position of the robot, and map building database is updated at the same time. By the proposed method, the elapsed time for map building is within 2 minutes for 50㎡ region, the positioning accuracy is ±13cm and the error about the positioning angle of the robot is ±3 degree for localization.

  • PDF

Image Data Loss Minimized Geometric Correction for Asymmetric Distortion Fish-eye Lens (비대칭 왜곡 어안렌즈를 위한 영상 손실 최소화 왜곡 보정 기법)

  • Cho, Young-Ju;Kim, Sung-Hee;Park, Ji-Young;Son, Jin-Woo;Lee, Joong-Ryoul;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Due to the fact that fisheye lens can provide super wide angles with the minimum number of cameras, field-of-view over 180 degrees, many vehicles are attempting to mount the camera system. Not only use the camera as a viewing system, but also as a camera sensor, camera calibration should be preceded, and geometrical correction on the radial distortion is needed to provide the images for the driver's assistance. In this thesis, we introduce a geometric correction technique to minimize the loss of the image data from a vehicle fish-eye lens having a field of view over $180^{\circ}$, and a asymmetric distortion. Geometric correction is a process in which a camera model with a distortion model is established, and then a corrected view is generated after camera parameters are calculated through a calibration process. First, the FOV model to imitate a asymmetric distortion configuration is used as the distortion model. Then, we need to unify the axis ratio because a horizontal view of the vehicle fish-eye lens is asymmetrically wide for the driver, and estimate the parameters by applying a non-linear optimization algorithm. Finally, we create a corrected view by a backward mapping, and provide a function to optimize the ratio for the horizontal and vertical axes. This minimizes image data loss and improves the visual perception when the input image is undistorted through a perspective projection.

Localization using Ego Motion based on Fisheye Warping Image (어안 워핑 이미지 기반의 Ego motion을 이용한 위치 인식 알고리즘)

  • Choi, Yun Won;Choi, Kyung Sik;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.70-77
    • /
    • 2014
  • This paper proposes a novel localization algorithm based on ego-motion which used Lucas-Kanade Optical Flow and warping image obtained through fish-eye lenses mounted on the robots. The omnidirectional image sensor is a desirable sensor for real-time view-based recognition of a robot because the all information around the robot can be obtained simultaneously. The preprocessing (distortion correction, image merge, etc.) of the omnidirectional image which obtained by camera using reflect in mirror or by connection of multiple camera images is essential because it is difficult to obtain information from the original image. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we extract motion vectors using Lucas-Kanade Optical Flow in preprocessed image. Third, we estimate the robot position and angle using ego-motion method which used direction of vector and vanishing point obtained by RANSAC. We confirmed the reliability of localization algorithm using ego-motion based on fisheye warping image through comparison between results (position and angle) of the experiment obtained using the proposed algorithm and results of the experiment measured from Global Vision Localization System.

Omnidirectional Camera Motion Estimation Using Projected Contours (사영 컨투어를 이용한 전방향 카메라의 움직임 추정 방법)

  • Hwang, Yong-Ho;Lee, Jae-Man;Hong, Hyun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.35-44
    • /
    • 2007
  • Since the omnidirectional camera system with a very large field of view could take many information about environment scene from few images, various researches for calibration and 3D reconstruction using omnidirectional image have been presented actively. Most of line segments of man-made objects we projected to the contours by using the omnidirectional camera model. Therefore, the corresponding contours among images sequences would be useful for computing the camera transformations including rotation and translation. This paper presents a novel two step minimization method to estimate the extrinsic parameters of the camera from the corresponding contours. In the first step, coarse camera parameters are estimated by minimizing an angular error function between epipolar planes and back-projected vectors from each corresponding point. Then we can compute the final parameters minimizing a distance error of the projected contours and the actual contours. Simulation results on the synthetic and real images demonstrated that our algorithm can achieve precise contour matching and camera motion estimation.

Geometric Correction of Vehicle Fish-eye Lens Images (차량용 어안렌즈영상의 기하학적 왜곡 보정)

  • Kim, Sung-Hee;Cho, Young-Ju;Son, Jin-Woo;Lee, Joong-Ryoul;Kim, Myoung-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.601-605
    • /
    • 2009
  • Due to the fact that fish-eye lens can provide super wide angles with the minimum number of cameras, field-of-view over 180 degrees, many vehicles are attempting to mount the camera system. Camera calibration should be preceded, and geometrical correction on the radial distortion is needed to provide the images for the driver's assistance. However, vehicle fish-eye cameras have diagonal output images rather than circular images and have asymmetric distortion beyond the horizontal angle. In this paper, we introduce a camera model and metric calibration method for vehicle cameras which uses feature points of the image. And undistort the input image through a perspective projection, where straight lines should appear straight. The method fitted vehicle fish-eye lens with different field of views.

  • PDF

Using Contour Matching for Omnidirectional Camera Calibration (투영곡선의 자동정합을 이용한 전방향 카메라 보정)

  • Hwang, Yong-Ho;Hong, Hyun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.125-132
    • /
    • 2008
  • Omnidirectional camera system with a wide view angle is widely used in surveillance and robotics areas. In general, most of previous studies on estimating a projection model and the extrinsic parameters from the omnidirectional images assume corresponding points previously established among views. This paper presents a novel omnidirectional camera calibration based on automatic contour matching. In the first place, we estimate the initial parameters including translation and rotations by using the epipolar constraint from the matched feature points. After choosing the interested points adjacent to more than two contours, we establish a precise correspondence among the connected contours by using the initial parameters and the active matching windows. The extrinsic parameters of the omnidirectional camera are estimated minimizing the angular errors of the epipolar plane of endpoints and the inverse projected 3D vectors. Experimental results on synthetic and real images demonstrate that the proposed algorithm obtains more precise camera parameters than the previous method.

An Observation System of Hemisphere Space with Fish eye Image and Head Motion Detector

  • Sudo, Yoshie;Hashimoto, Hiroshi;Ishii, Chiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.663-668
    • /
    • 2003
  • This paper presents a new observation system which is useful to observe the scene of the remote controlled robot vision. This system is composed of a motionless camera and head motion detector with a motion sensor. The motionless camera has a fish eye lens and is for observing a hemisphere space. The head motion detector has a motion sensor is for defining an arbitrary subspace of the hemisphere space from fish eye lens. Thus processing the angular information from the motion sensor appropriately, the direction of face is estimated. However, since the fisheye image is distorted, it is unclear image. The partial domain of a fish eye image is selected by head motion, and this is converted to perspective image. However, since this conversion enlarges the original image spatially and is based on discrete data, crevice is generated in the converted image. To solve this problem, interpolation based on an intensity of the image is performed for the crevice in the converted image (space problem). This paper provides the experimental results of the proposed observation system with the head motion detector and perspective image conversion using the proposed conversion and interpolation methods, and the adequacy and improving point of the proposed techniques are discussed.

  • PDF

Economical image stitching algorithm for portable panoramic image assistance in automotive application

  • Demiryurek, Ahmet;Kutluay, Emir
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.143-152
    • /
    • 2018
  • In this study an economical image stitching algorithm for use in automotive industry is developed for retrofittable panoramic image assistance applications. The aim of this project is to develop a driving assistance system known as Panoramic Parking Assistance (PPA) which is cheap, retrofittable and compatible for every type of automobiles. PPA generates bird's eye view image using cameras installed on the automobiles. Image stitching requires to get bird's eye view position of the vehicle. Panoramic images are wide area images that cannot be available by taking one shot, attained by stitching the overlapping areas. To achieve correct stitching many algorithms are used. This study includes some type of these algorithms and presents a simple one that is economical and practical. Firstly, the mathematical model of a wide view of angle camera is provided. Then distorted image correction is performed. Stitching is implemented by using the SIFT and SURF algorithms. It has been seen that using such algorithms requires complex image processing knowledge and implementation of high quality digital processors, which would be impracticle and costly for automobile use. Thus a simpler algorithm has been developed to decrase the complexity. The proposed algorithm uses one matching point for every couple of images and has ease of use and does not need high power processors. To show the efficiency, images coming from four distinct cameras are stitched by using the algorithm developed for the study and usability for automotive application is analyzed.

Localization of a Mobile Robot Using Multiple Ceiling Lights (여러 개의 조명등을 이용한 이동 로봇의 위치 추정)

  • Han, Yeon-Ju;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.379-384
    • /
    • 2013
  • We propose a new global positioning method for the indoor mobile robots. The multiple indoor lights fixed in ceiling are used as the landmarks of positioning system. The ceiling images are acquired by the fisheye lens camera mounted on the moving robot. The position and orientation of the lights are extracted by binarization and labeling techniques. Also the boundary lines between ceiling and walls are extracted to identify the order of each light. The robot position is then calculated from the extracted position and known position of the lights. The proposed system can increase the accuracy and reduce the computation time comparing with the other positioning methods using natural landmark. Experimental results are presented to show the performance of the method.