• Title/Summary/Keyword: Fish habitat

Search Result 407, Processing Time 0.03 seconds

Effects of Habitat Disturbance on Fish Community Structure in a Gravel-Bed Stream, Korea (자갈하천에서 서식처 교란이 어류 군집구조에 미치는 영향)

  • Kim, Seog Hyun;Lee, Wan-Ok;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.49-60
    • /
    • 2014
  • Fish assemblages play an integral role in stream ecosystem and are influenced by stream environmental conditions and habitat disturbances. Fish community structures and habitat parameters of U.S. EPA rapid bio-assessment protocol were surveyed to investigate the effect of stream environment and habitat disturbance on fish communities at 13 study sites in the Gapyeong Stream, a typical gravel-bed stream. Principal component analysis (PCA) based on data from habitat assessment at each study site indicated that the study sites were differentiated by habitat parameters such as embeddedness, velocity/depth regime and sediment deposition, which were related with bed slope. A total of 46 species belonging to 12 families were collected in the Gapyeong Stream. A dominant species was Zacco koreanus, subdominant species was Z. platypus. Hierarchical cluster analysis based on species abundance classified fish communities into the three main groups along the stream longitudinal change. Non-metric multidimensional scaling (NMDS) portrayed that fish community structures were related to major habitat parameters, i.e., epifaunal substrate/available cover, embeddedness, velocity/depth regime, sediment deposition, channel alternation and frequency of riffles. These results suggested that fish community structures were primary affected by the longitudinal environmental changes, and those were modified by habitat disturbance in the Gapyeong Stream, a gravel-bed stream.

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution (어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용)

  • Shim, Taeyong;Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.

Analysis of Prey of Mandarin Fish and Large Mouth Bass and Distribution of Fish Population in Lake Paro, Korea

  • Lee, Jaeyong;Lee, Kwang Yeol;Park, Sungchul;Choi, Jaeseok;Jang, Hong Gi;Kim, Joon Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.210-220
    • /
    • 2015
  • We quantified temporal and spatial changes in the habitat for fish populations, the distribution of mandarin fish(Siniperca scherzeri) and an introduced species, largemouth bass(Micropterus salmoides) in Lake Paro and inflowing streams. The number of fish species identified in Lake Paro and the tributary streams included 10 families, 24 species and 10 families 30 species, respectively. The dominant fish species in Lake Paro were Zacco platypus, Hemibarbus labeo, Squalidus gracilis majimae, S. scherzeri and Tridentiger brevispinis, Z. platypus, Z. koreanus, and S. gracilis majimae in the inflowing streams. Although the habitat segregation for S. scherzeri and M. salmoides occurs, these two species showed the use of the fishes of the family Gobiidae as an important prey item based on IRI analysis. S. scherzeri and M. salmoides preyed mainly on T. brevispinis(67.4 %) and R. brunneus(84.0 %), respectively. The species preyed on by S. scherzeri and M. salmoides were benthic fishes that inhabit shallow water depths around the lake and have little swimming ability.

Assessment of Riverine Health Condition and Estimation of Optimal Ecological Flowrate Considering Fish Habitat in downstream of Yongdam Dam (용담댐 하류의 하천건강성 평가 및 어류 서식처를 고려한 최적 생태유량 산정)

  • Hur, Jun-Wook;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.481-491
    • /
    • 2009
  • In this study, a comprehensive field monitoring was conducted to understand habitat conditions of fish species in the upper Geum river. Based on the monitoring data, riverine health conditions such as composition ratio of fish species, richness and dominance indexes, bio-diversity (dominance index, diversity, evenness and richness), and index of biological integrity were assessed, and optimal ecological flowrates were estimated using the habitat suitability indexes established for three fish species Coreoleuciscus splendidus, Zacco platypus and Pseudopungtungia nigra selected as icon species using the physical habitat simulation system (PHABSIM). The total number of species sampled was 20 species, and two sensitive species of C. splendidus (22.4%) and Z. platypus (22.0%) dominated the fish community. The estimated IBI values ranged from 34 to 42 with average being 38 out of 50, rendering the site ecologically fair to good health conditions. An optimal ecological flowrate of 9.0 cms was recommended for the representative fish species at the site.

Application of Echo-Sounder Monitoring Technique as Ecological Impact Assessments of Fish on Artificial Weir Construction (인공보의 어류생태영향 평가를 위한 Echo-sounder 모니터링 기법 적용)

  • Han, Jeong-Ho;Lee, Jae Hoon;Choi, Ji-Woong;Lim, Byung Jin;Park, Jong-Hwan;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.859-877
    • /
    • 2012
  • In this study, Echo-sounder($E_s$) monitoring methodology was applied to test environmental impacts of artificial weirs(SCW and JSW) in the Yeongsan River on fish community and habitat structures at first time, and was compared with conventional fish sampling methodologies($C_s$). For the Es monitoring in the fields, parallel transect methods was employed in determining the survey distance interval with every 125 m within the upper-lower 2 km of the weirs. Four different fish sampling gears such as casting nets, kick nets, fyke nets, and gill nets were used for applications of $C_s$ monitoring methodology. According to the Echo-sounder monitoring, fish density, expressed as a number of individuals per square meter, along the longitudinal axis of the weir was significantly greater(JSW, t = 3.506, n = 30, p < 0.001) in the down-river reach of the weir than in the up-river reach. Also, fish density along the vertical water column was highest at mid-depths of Seungchon weir, which has simple habitat substrates, while fish density was highest at hypolimnetic depth of Juksan weir. According to fish sampling by the $C_s$ methodology, the fish compositions decreased as the river goes upward, and significant differences(JSW, t = 0.248, n = 30, p < 0.05) in the compositions of fish species occurred between up-reach and down-reach of the weirs. The dominant species near the two weirs were Opsarichthys uncirostris amurensis, Hemiculter eigenmanni and Coilia nasus. Overall, our fish and habitat data, based on $E_s$ and $C_s$ monitoring methodologies, suggest that the weirs disturbed the rivers due to initial habitat disturbances by the weir constructions as well as the barrier roles of weirs on fish passage and migrations. More long-term scientific and systematic fish impact monitoring and assessments($E_s$ and $C_s$) are required in the future to predict changes of ecological structures and functions on the constructions of the weirs.

Fish fauna and the population of a Korean endangered freshwater fish, Brachymystax lenok tsinlingensis, in Korea: Bonghwa Habitat

  • Lim, Dohun;Lee, Yoonjin
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.638-645
    • /
    • 2019
  • This research was an evaluation of the fish fauna and the habitat for Brachymystax lenok tsinlingensis (B. lenok tsinlingensis) for 11 stations at the Bonghwa-gun sanctuary. The predominant species in this research area was Zacco koreanus. B. lenok tsinlingensis, which has been designated as an endangered freshwater fish in Korea, was found in the Bonghwa sanctuary zone, except at stations 5 and 6. The B. lenok individuals were shorter in length than 400 mm. In total, 13 endemic species were found, including Coreoleuciscus splendidus and Iksookimia longicorpus. Specimens of Koreocobitis naktongensis, a first grade endangered species, were also collected. The benthic macroinvertebrates consisted of four divisions, four classes, seven orders, 30 families, 60 species, and 10,344 individuals and were distributed among the orders Ephemeroptera (55.9%), Diptera (18.2%), Trichoptera (12.4%), Plecoptera (2.1%), and Odonata (0.3%).

Impact of Baseflow on Fish Community in the Ungcheon Stream, Korea

  • Choi, Byungwoong;Oh, Woo Seok;Kim, Nam Shin;Cha, Jin Yeol;Lim, Chi Hong
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.4
    • /
    • pp.235-246
    • /
    • 2021
  • This study investigated the impact of baseflow on fish community in the Ungcheon stream (16.5 km long) located downstream of the Boryeong Dam, Korea. Based on field monitoring, there were five dominant fish species in the Ungcheon Stream accounting for 75% of the total fish community: Zacco platypus, Zacco koreanus, Tridentiger brevispinis, Rhinogobius brunneus, and Pungtungia herzi. These five fish species were selected as target species. HydroGeoSphere (HGS) and River2D models were used for hydrologic and hydraulic simulations, respectively. A habitat suitability index model was used to simulate fish habitat. To assess the impact of baseflow, each representative discharge was examined with or without baseflow. The HGS model was used to calculate baseflow within the study reach. This baseflow was observed to increase gradually with longitudinal distance. Validation of the hydraulic model dem onstrated that computed water surface elevated when baseflow was included, which was in good agreement with measured data, as opposed to the result when baseflow was excluded. Composite suitability index distributions and weighted usable area in the study reach were presented for target species. Simulations indicated that the baseflow significantly increased habitat suitability for the entire fish community. These results demonstrate that there should be a substantial focus on the baseflow for physical habitat simulation.

Impact on Fish Community by Restoration of Ecological Waterway using Physical Habitat Simulation (물리서식처 분석을 통한 생태 물길 복원이 다양한 군집종에 미치는 영향)

  • Choi, Heung Sik;Choi, Jonggeun;Choi, Byungwoong
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study performed the impact of ecological waterway on fish community in a reach of the Dal River, Korea. Fish monitoring revealed that 9 fish species are dominant, namely Zacco platypus, Coreoleuciscus splendidus, Zacco koreanus, Pungtungia herzi, Acheilognathus yamatsutae, Rhinogobius brunneus, Tanakia signifer, Gobiobotia macrocephala, and Pseudopungtungia tenuicorpus, and account for 95% of the total fish community. The River2D model was used for the computation of the flow and the HSI model for the habitat simulation. The restoration of the waterway performed through the small dam removal, the formation of the pool-riffle structure, and the change of the bed elevation and width. Simulation results indicated that the restoration of the ecological waterway effects significantly increased by about 16% for the WUA (Weighted Usable Area) of the total fish community in optimal ecological flow conditions ($Q=7.0m^3/s$). The restoration of the ecological waterway is more advantageous to fish community.

APPLICATION OF AQUATIC HABITAT IMPROVEMENT TECHNIQUES AT TA-CHIA RIVER IN TAIWAN

  • Tuan, Ching-Hao;Yeh, Chao-Hsien
    • Water Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.161-168
    • /
    • 2005
  • With characteristics of river continuum, stream ecosystems have diverse components and environments from upstream channel to estuarine area. Therefore, the habitat requirements and composition of conservative object should be well understood before applying any improvement measure. In this paper, the causes of stream habitat changes were first illustrated with the categories and principles of habitat restoration methods. The structural restoration techniques of fish habitat improvement utilized by the authors or one three-year research project starting at 1990 were then presented. Through the introductions on the project background, planning guidelines, structure design, and ecological evaluation, this paper tried to provide some effective examples of stream restoration practices that ecological expert was invited for cooperation and advising.

  • PDF

Estimation of Habitat Suitability Index of Fish Species in the Geum River Watershed (금강수계 하천에서의 어류 서식처적합도지수 산정)

  • Kang, Hyeongsik;Im, Dongkyun;Hur, Jun Wook;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.193-203
    • /
    • 2011
  • With the recent growth of environmental and ecological interests, various river restoration and habitat environment creation projects are being carried out. For this, the estimation of the habitat flow discharge is important. In U.S. and Europe nations, The instream flow incremental methodology (IFIM) has been used to estimate the habitat discharge. IFIM is the method that can be applied to evaluate the flow discharge for the suitable habitat. To use the IFIM in river, a habitat suitability index(HSI) for the target organism is needed. However, HSIs for only two species of Zacco platypus and Zacco temminckii were proposed from the field monitoring. Thus, for the estimation of the ecological flow rate for a group of fish, the development of the HSIs for various fish are necessary. In this study, physical data such as water level and flow rate, chemical data such as acidity and dissolved oxygen, and life data such as fish types and population are collected in Keum river watershed. Based on the 2,736 field data, HSIs for the following 6 fish are developed: Zacco platypus, Zacco temminckii, Microphysogobio yaluensis, Coreoleuciscus splendidus, Pungtungia herzi, Pseudogobio esocinus. Through the comparison with HSIs in the literature, the developed HSIs are modified. Also, the limits of Froude number, pH, and DO for 6 fish are proposed. The HSIs developed in this study can be utilized as a essential data for performing river project evaluations.