• Title/Summary/Keyword: Fish bacteria

Search Result 532, Processing Time 0.025 seconds

Performance and Microbial Characteristics of Bio-hydrogen Production from Food Waste with Thermal Pre-treatment (음식물류 폐기물의 혐기성 수소 발효 시 열처리에 따른 성능 및 미생물 특성 평가)

  • Lee, Chaeyoung;Choi, Jaemin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • This study was conducted to investigate the effect of thermal pre-treatment on bio-hydrogen from food waste. Two continuous reactors operated and VFAs(volatile fatty acids) production and microbial communities were analyzed. The average hydrogen yield was 0.50 and 0.33mol $H_2/mol$ $hexose_{added}$ in thermally treated food added reactor(R1) and control(R2), respectively. Butyrate concentration was similarly 7,500mg/L in both reactors, but two times higher lactate concentration was observed in R2(3,800mg/L). The results of FISH(fluorescence in situ hybridization) showed that the relative microorganism to hydrogen producing bacteria was 78 and 27% in R1 and R2, respectively.

Isolation of Marine Bacterium Decomposing Sea tangle (Laminaria japonica) to Single Cell Detritus (다시마(Laminaria japonica)를 single cell detritus로 분해하는 해양세균의 분리)

  • Yi, Kun-Wook;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.237-240
    • /
    • 2006
  • Seventy-one marine bacteria decomposing sea tangle (Laminaria japonica) into single cell detritus (SCD) were isolated from sea water, sea tangle, sea mustard (Undaria pinnatifida), sea urchin (Anthocidaris crassispina), star fish (Acanthaster planci), and turban cell (Batillus cornutus), among which 14 strains decreased cutting strength of sea tangle and had alginate-degrading activity. Marine bacterium No. 34 isolated from turban cell showed lowest cutting strength of sea tangle, strongest alginate-degrading activity, and produced high content of $5-10\;{\mu}m$ SCD from sea tangle. This strain was identified as Vibrio sp. based on morphological, physiological, and biochemical characteristics and named as Vibrio sp. YKW-34.

Fate and Transport of Mercury in Environmental Media and Human Exposure

  • Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.335-343
    • /
    • 2012
  • Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental ($Hg^0$) and divalent ($Hg^{2+}$) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly $Hg^{2+}$, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans.

A Transdisciplinary Approach for Water Pollution Control: Case Studies on Application of Natural Systems

  • Polprasert, Chongrak;Liamlaem, Warunsak
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.185-195
    • /
    • 2014
  • Despite the enormous technical and economic efforts to improve environmental conditions, currently about 40% of the global population (or 2 billion people) are still lack access to safe water supply and adequate sanitation facilities. Pollution problems and transmission of water- related diseases will continue to proliferate. The rapid population growth and industrialization will lead to a reduction of arable land, thus exacerbating the food shortage problems and threatening environmental sustainability. Natural systems in this context are a transdisciplinary approach which employs the activities of microbes, soil and/or plants in waste stabilisation and resource recovery without the aid of mechanical or energy-intensive equipments. Examples of these natural systems are: waste stabilisation ponds, aquatic weed ponds, constructed wetlands and land treatment processes. Although they require relatively large land areas, the natural systems could achieve a high degree of waste stabilisation and at the same time, yield potentials for waste recycling through the production of algal protein, fish, crops, and plant biomass. Because of the complex interactions occurring in the natural systems, the existing design procedures are based mainly on empirical or field experience approaches. An integrated kinetic model encompassing the activities of both suspended and biofilm bacteria and some important engineering parameters has been developed which could predict the organic matter degradation in the natural systems satisfactorily.

Ecobiotechnology of Marine Sponges and Their Symbionts - Review and Present Status

  • Pallela, Ramjee;Kim, Se-Kwon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.15-25
    • /
    • 2011
  • Marine sponges are a rich source of highly diversified bioactive compounds. These medicinally valuable molecules represent extreme physiological and ecological functions in sponges, more presumably involving in the resistance to the feeding by other marine organisms like fish and fouling by barnacles, bacteria, fungi, etc. This feature of attaining resistance made sponges as successful poriferans that possess an impressive array of biological properties ranging from antimicrobial to anticancerous activities. The diversified bioactive principle of sponges might be due to their spacio-temporal distribution and although, the gateway for exploiting the sponges for isolating these distinct, potential molecules is open, suitable technical and methodological approaches are yet to be implemented in order to bring the sponges as successful pharmaceutical leads in the field of marine biotechnology. Despite of the identified difficulties of marine sponge research from past few decades, one should concentrate not only on the basic and applied technical/methodological considerations, but also on the novel strategies like in vitro sponge cell, fragment and whole sponge culture; sponge symbiont cell culture; in situ and ex situ sponge cultivation; and sponge bioreactors and metagenomic approaches, for the successful exploitation of marine sponges towards the novelty in sponge biotechnology. The present review narrates the pros and cons of the nowadays-marine sponge research by focusing on the suggestive ecobiotechnological approaches, based on the latest studies for feasible ecological exploitation and biotechnological application of sponges from the sea.

Investigation of water qualities and microbials on the flow-through olive flounder, Paralichthys olivaceus farms using coastal seawater and underground seawater in Jeju (연안해수와 지하해수를 사용하는 제주 넙치 양식장의 수질과 미생물 변동)

  • KIM, Youhee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • This study assessed the levels of water qualities and microbials contamination of inland olive flounder farms in Jeju in the summers from 2015 to 2017. Three farms (A-C) located in a concentrated area using mixing coastal seawater and underground seawater and one farm (D) located in an independent area using only coastal seawater were selected. Total ammonia nitrogen (TAN) reached a maximum of 0.898 ± 1.024 mg/L as N in the coastal seawater of A-C, which was close to the limit of the water quality management goal of the fish farm. TAN in the influent from A-C was up to three times higher than that of D, so that the discharged water did not spread to a wide range area along the coast and continued to affect the influent. TAN of the effluent in A-C increased by 2.7-4.6 times compared to the influent, resulting in serious self-pollution in the flounder farm. Heterotrophic marine bacteria in the influent of A-C was about 600 times higher than D, and the discharge of A-C was increased by about 30 times compared to the influent.

A Study of Antimicrobial & Antiviral Effect of Natural Product (천연물을 이용한 살균 및 살바이러스 효과에 관한 연구)

  • Ra, Jeong-Chan;Lee, Jong-Eun;Song, Dae-Sub;Kwon, Nam-Hoon;Park, Bong-Kyun;Park, Yong-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.4
    • /
    • pp.183-188
    • /
    • 2003
  • Bactericidal effect of $Green-Zone^{(TM)}$ was observed, when Staphylococcus aureus, E. coli O157:H7, Salmonella typhimurium, S. enteritidis, Listeria monocytogenes, the causative bacteria of food poisoning, Vibrio parahaemolyticus, and Shigella sonnei were treated with the diluted solution of $Green-Zone^{(TM)}$(33.3%~4.1%) for 30min at $20^{\circ}C$. All the bacteria were killed in 30 sec, when 33.3%-diluted $Green-Zone^{(TM)}$ was applied, except for S. aureus. Coronavirus, the same virus with SARS virus taxonomically, was also lilled with the 20%-diluted $Green-Zone^{(TM)}$. Canine parvovirus and Canine distermper virus were also killed even in the organic matter and hard water when treated with $Green-Zone^{(TM)}$. When applied to food such as raw fish, chilled meat, vegetables, $Green-Zone^{(TM)}$ could also decrease the number of microorganism, expecially for E. Coli. From these results, $Green-Zone^{(TM)}$ is thought to be effective for killing virus and bacteria, and also was proved to be safe when applied directrly to food.

Changes in the Viable Counts and Microflora of Oyster and Weakfish during Cold Storage (굴과 Weakfish의 저온저장중 생균수 및 Microflora의 변화)

  • 박찬성
    • Korean journal of food and cookery science
    • /
    • v.12 no.3
    • /
    • pp.312-319
    • /
    • 1996
  • Oyster (Crassostrea virginica) and Weakfish (Cynoscion regalis) were stored at 6, 0, -4 and -20$^{\circ}C$ for up to 45 days and examined for changes in microflora. Aerobic plate counts (incubated at 21$^{\circ}C$) were performed at selected times during storage and 495 isolates (255 isolates from oyster and 240 isolates from Weakfish) were randomly selected from the plates during the storage. Before the storage of the fishes, viable counts of oyster were 4.9${\times}$10$\^$5/ CFU/g of meat and those of Weakfish were 1.5${\times}$10$^4$ CFU/cm$^2$of skin. Microflora of oyster before storage, the major isolates identified as Pseudomonas spp. (67%) and Vibrio spp. (20%). Pseudomonas ll1/1V-H and Flavobacterium/Cytophaga were predominant genus in the microflora of oyster during cold storage at 6, 0, -4 and -20$^{\circ}C$. The composition of the microflora of Weakfish before storage, Acinetobacter (40%) and Moraxella (33%) were the major species, with Pseudomonas and Vibrio constituting a small percentage of the total isolates. The microflora shifted to predominantly Pseudomonas spp. during storage at 6. 0 and -4$^{\circ}C$, making up from 60 to 100% of isolated strains. During frozen storage, the percentage of isolates identified as Mnraxella increased to 40-60% of the total isolates. During cold storage, halophilic bacteria (Pseudomonas lII/IV-H and Vibrio) were predominant in oyster while nonhalophilic bacteria (Pseudomonas III/IV-NH and Moraxella) were predominant in Weakfish. Vibrio spp. were higher in oyster than in Weak fish. Listeria spp. were not isolated but unidentified ${\beta}$-hemolytic bacteria were islolated from both of the fishes during cold storage.

  • PDF

Distribution of Microorganisms in the Marine Ranching Ground of Tongyong Coastal Waters (통영 연안 해역에서의 미생물 분포)

  • 장지철;김말남;이진환;김종만
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.4
    • /
    • pp.403-409
    • /
    • 2000
  • Surface and bottom water samples were collected from 10 stations located in the coastal area of Tongyong in April, August and October 2000. Distribution of heterotrophic bacteria, coliform bacteria and fungi in the sea water samples was investigated by measuring the corresponding viable cell number according to the plate counting method. Heterotrophic bacteria in the surface water counted 3.1$\times$10$^2$- 4.0$\times$10$^3$cfu ml$\^$-1/, 2.7$\times$10$^3$- 1.2$\times$10$\^$5/cfu ml$\^$-1/ and 1.3$\times$10$^2$- 7.2$\times$10$^2$cfu ml$\^$-1/ in April, August and October, respectively. The cell number of coliform bacteria in the surface water amounted to 0-1.5$\times$10$^1$cfu ml$\^$-1/, 3.5$\times$10$^1$- 5.2$\times$10$^3$cfu ml$\^$-1/ and 0-1.8$\times$10$^2$cfu ml$\^$-1/ in April, August and October, respectively. As for fungi, the cell number in the surface water was 0-3.0$\times$10$^1$propagules ml$\^$-1/, 3.0$\times$10$^1$- 8.0$\times$10$^1$ propagules ml$\^$-1/ and 0-2.2$\times$10$^1$ propagules ml$\^$-1/ in April, August and October respectively. The surface water samples from the station 3 in August were added with feed stuffs for fish as much as 0.01 gl$\^$-1/, 0.1 gl$\^$-1/ and 1 gl$\^$-1/ and cultured at 5$\^{C}$, 15$\^{C}$, 25$\^{C}$ and 35$\^{C}$. Microbial cells were not isolated at all when the culturing temperature was 5$\^{C}$. However, the microbial cell number increased significantly in all the surface water samples containing 1 gl$\^$-1/ of the feed stuffs when cultured at 15$\^{C}$, 25$\^{C}$ and 35$\^{C}$

  • PDF

Water quality and bacterial counts in hatchery of Rockbream, Oplegnathus fasciatus (돌돔(Oplegnathus fasciatus)부화장의 사육수 수질과 세균수)

  • Choi, Hye-Sung;Moon, Tae-Seok;Park, Young-Chul
    • Journal of fish pathology
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • To investigate the cause of the mass mortality during rockbream, Oplegnathus fasciatus seed production, the water quality and bacterial counts of sea water in breeding tanks was measured 20days post the hatch. During breeding of rockbream fry, the environmental factors of water quality were detected as pH, ammonia COD, phosphate at the supply of the food organisms and the seawater. pH was decreased from the 8.21 of the 1 day per hatch (dph) to 7.56 of the on the 7 dph. Ammonia was conversely increased 0.49 ppm of the 1 dph to 0.85 ppm of 10 dph. As the adding of the chlorella and the rotifer tanks, COD was increased the 3.3 times and 1.2 times than those of pre-adding respectively. The phosphate and the ammonia were also increased 1.7 and 2.3 times, with adding the chlorella respectively, which exceeded the second grade for sea water evaluation level, 0.015 ppm and 0.1 ppm respectively. Water quality was not improved by PSB (Photosynthetic Bacteria) treatment, which increased the value of COD in 1.7 times, phosphate in 2.7 times and ammonia in 1.4 times. The number of the bacteria was also increased along the dph. According to the treatment of chlorella, the number of total bacteria increased in 1.4 times and those of Vibrio sp. 1.6 times. The lethal concentration of ammonia was investigated that over than 10 ppm could killed the fry of rockbream within 28 hrs, but 40% in 2 ppm.