• Title/Summary/Keyword: First-order optics

Search Result 70, Processing Time 0.024 seconds

Optical Design of Afocal Zoom Telescope System for Thermal Imagery (열상장비용 줌무초점망원경 설계)

  • 홍경희;김창우
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • A IR zoom telescope system was designed for thermal imagery. The magnification is 4-14 and the focal length of eye piece is 25 mm. First, the frame was built up with first order optics and started design with 3rd order optics. There after, we can get the final design by optimization technique through finite ray tracing. The optical system was optimized with ray aberration or angular aberration including higer orders. Finally, The performance of the optical system was accessed by calculating the diffraction MTF from the design data. data.

  • PDF

Effect of Solvent on Some Excited States Processes of Mg- and Zn-Phthalocyanines$^\dag$

  • Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.416-421
    • /
    • 1986
  • The solvent coordination effect on the excited state processes of Mg(II)- and Zn(II)-phthalocyanines has been described. The triplet state of these compounds decays with mixed first and second order kinetics or mainly second order kinetics depending on the solvents used. The first order component of the rate constants decrease along with the series, dimethylsulfoxide (5-coordinated), 1-chloronaphthalene (4-coordinated) and piperidine (6-coordinated), while the second order rate constant is dependent on the diffusion rate constant of the solvents. The excited state quenching by methylviologen or p-benzoquinone is discussed. And ion recombination rate constant is given.

Integrated Optimization Design of Carbon Fiber Composite Framework for Small Lightweight Space Camera

  • Yang, Shuai;Sha, Wei;Chen, Changzheng;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.389-395
    • /
    • 2016
  • A Carbon Fiber Composite (CFC) framework was designed for a small lightweight space camera. According to the distribution characteristics of each optical element in the optical system, CFC (M40J) was chosen to accomplish the design of the framework. TC4 embedded parts were used to solve the low accuracy of the CFC framework interface problem. An integrated optimization method and the optimization strategy which combined a genetic global optimization algorithm with a downhill simplex local optimization algorithm were adopted to optimize the structure parameters of the framework. After optimization, the total weight of the CFC framework and the TC4 embedded parts is 15.6 kg, accounting for only 18.4% that of the camera. The first order frequency of the camera reaches 104.8 Hz. Finally, a mechanical environment test was performed, and the result demonstrates that the first order frequency of the camera is 102 Hz, which is consistent with the simulation result. It further verifies the rationality and correctness of the optimization result. The integrated optimization method mentioned in this paper can be applied to the structure design of other space cameras, which can greatly improve the structure design efficiency.

Dynamic Modulation Transfer Function Analysis of Images Blurred by Sinusoidal Vibration

  • Du, Yanlu;Ding, Yalin;Xu, Yongsen;Sun, Chongshang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.762-769
    • /
    • 2016
  • The dynamic modulation transfer function (MTF) for image degradation caused by sinusoidal vibration is formulated based on a Bessel function of the first kind. The presented method makes it possible to obtain an analytical MTF expression derived for arbitrary frequency sinusoidal vibration. The error obtained by the use of finite order sum approximations instead of infinite sums is investigated in detail. Dynamic MTF exhibits a stronger random behavior for low frequency vibration than high frequency vibration. The calculated MTFs agree well with the measured MTFs with the slant edge method in imaging experiments. With the proposed formula, allowable amplitudes of any frequency vibration are easily calculated. This is practical for the analysis and design of the line-of-sight stabilization system in the remote sensing camera.

Off-axis Two-mirror System with Wide Field of View Based on Diffractive Mirror

  • Meng, Qingyu;Dong, Jihong;Wang, Dong;Liang, Wenjing
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.604-613
    • /
    • 2015
  • An unobstructed off-axis two-mirror system is presented in this paper. First a suitable initial configuration is established based on third-order aberration theory. In order to achieve a wide field of view (FOV) with high image quality , the diffractive mirror is adopted in the two-mirror system to increase the optimization freedom and the aberration relationship between diffractive phase coefficients and Zernike coefficients is derived. Furthermore, a complete comparison design example with a focal length of 1200 mm, F-number of 12, and FOV of 40° × 2° is given to verify the aberration correction ability of the diffractive mirror. The system average wavefront error is 0.007 λ (λ=0.6328 μm) developed from 0.061 λ when the system didn’t adopt the diffractive mirror. In this system the phase modulation function of the diffractive mirror is established as an even function of x, so we could obtain a symmetrical imaging quality about the tangential plane, and the symmetric aberration performance also brings considerable convenience to alignment and testing for the system.

Knowledge According to Learning Experiences of CPR for Health Occupation College Students (대학생의 심폐소생술에 대한 교육경험에 따른 지식 - 일 광역시를 중심으로 -)

  • Uhm, Dong-Choon;Jun, Myung-Hee;Hwang, Ji-Young;Choi, Jee-Yae
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.14 no.1
    • /
    • pp.138-146
    • /
    • 2008
  • Purpose: The first responder's role during a cardiac arrest scene is to initiate CPR. The AHA has recognized and included the first responder's role for improving the survival rate of cardiac arrest patients. Health personnel working in nursing, emergency care, dental hygiene, radiology, and ocular optics frequently confront sudden cardiac arrest while working. This study was to identify the relationship between the educational experience and recognition with the level of knowledge about CPR for college students. Method: Five hundred forty college students enrolled in the department of nursing science, radiological technology, ocular optics, emergency medical technician, or dental hygiene in Daejeon city were surveyed. The tool used was CPR knowledge developed by the authors based on a literature review including 2005 AHA's CPR guideline. Result: The higher educational experience of CPR was, the higher the level of knowledge. The knowledge of the students in nursing or emergency medical technician was higher than students in dental hygiene, radiology, and ocular optics. Conclusion: CPR class should be included in the curriculum for college students in order to improve their accuracy as a first responder to cardiac arresting patients.

An improved kirchhoff approximation for radar scattering from rough surfaces (거친 표면 레이다 산란 해석을 위한 개선된 Kirchhoff 근사 방법)

  • Oh, Yisok
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.45-52
    • /
    • 1995
  • A new Kirchhoff approximation(KA) method was proposed for microwave scttering from randomly rough surfaces. Using the spectral representation of delta function and its sifting theorem, a new KA was formulated directly without any further approximation, and this formulated was used to compute exact backscttering coefficients. The validity of the KA was verified by a numerical method, and this new KA technique was used to evaluate the existing approximated KkA methods; i.t., the zeroth-order and the first-order approximated physical optics(PO) models. It was shown that the first-order approximated PO model has small error than the zeroth-order approximated PO model at low incidence angles and the opposite happens at higher incidence angles. This new KA model can be used to compute exact scattering coefficients in the validity regions of KA and to evaluate other theoretical and numerical models for scattering from randomly rough surfaces.

  • PDF

Higher-order PMD compensator using partially feed forward algorithm (부분적인 feed forward 제어 알고리즘을 사용한 고차 PMD 보상에 대한 연구)

  • 김나영;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • We proposed a noble algorithm using DOP (degree of polarization) not only as feedback signal but alto as feed-forward signal for the compensation of higher-order PMD effect. In the proposed algorithm, DOP after the first-order PMD compensation is considered as the indicator of the amount of residual higher-order PMD. This algorithm has the merit that DOF (degree of freedom) of the system can be limited to the level of the first-order PMD compensation system. Owing to the limited DOF, the reliability of the system can be enhanced and the complexity of the implementation can be degraded. For the analysis of the algorithm, we simulated the 10Gbps NRZ transmission system and obtained the result that the system outage probability can be reduced as much as three times with respect to the only first-order PMD compensation case.

Performance Prediction of a Laser-guide Star Adaptive Optics System for a 1.6 m Telescope

  • Lee, Jun Ho;Lee, Sang Eun;Kong, Young Jun
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.269-279
    • /
    • 2018
  • We are currently investigating the feasibility of a 1.6 m telescope with a laser-guide star adaptive optics (AO) system. The telescope, if successfully commissioned, would be the first dedicated adaptive optics observatory in South Korea. The 1.6 m telescope is an f/13.6 Cassegrain telescope with a focal length of 21.7 m. This paper first reviews atmospheric seeing conditions measured over a year in 2014~2015 at the Bohyun Observatory, South Korea, which corresponds to an area from 11.6 to 21.6 cm within 95% probability with regard to the Fried parameter of 880 nm at a telescope pupil plane. We then derive principal seeing conditions such as the Fried parameter and Greenwood frequency for eight astronomical spectral bands (V/R/I/J/H/K/L/M centered at 0.55, 0.64, 0.79, 1.22, 1.65, 2.20, 3.55, and $4.77{\mu}m$). Then we propose an AO system with a laser guide star for the 1.6 m telescope based on the seeing conditions. The proposed AO system consists of a fast tip/tilt secondary mirror, a $17{\times}17$ deformable mirror, a $16{\times}16$ Shack-Hartmann sensor, and a sodium laser guide star (589.2 nm). The high order AO system is close-looped with 2 KHz sampling frequency while the tip/tilt mirror is independently close-looped with 63 Hz sampling frequency. The AO system has three operational concepts: 1) bright target observation with its own wavefront sensing, 2) less bright star observation with wavefront sensing from another bright natural guide star (NGS), and 3) faint target observation with tip/tilt sensing from a bright natural guide star and wavefront sensing from a laser guide star. We name these three concepts 'None', 'NGS only', and 'LGS + NGS', respectively. Following a thorough investigation into the error sources of the AO system, we predict the root mean square (RMS) wavefront error of the system and its corresponding Strehl ratio over nine analysis cases over the worst ($2{\sigma}$) seeing conditions. From the analysis, we expect Strehl ratio >0.3 in most seeing conditions with guide stars.

Efficient Iterative Physical Optics(IPO) Algorithms for Calculation of RCS (RCS 계산을 위한 효율적인 IPO 계산 방법)

  • Lee, Hyunsoo;Jung, Ki-Hwan;Chae, Dae-Young;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.601-606
    • /
    • 2014
  • The IPO(Iterative Physical Optics) method repeatedly applies the well-known PO(Physical Optics) approximation to calculate the scattered field by a large object. Thus, the IPO method can consider the multiple scattering in the object, which is ignored for the PO approximation. This kind of iteration can improve the final accuracy of the induced current on the scatterer, which can result in the enhancement of the accuracy of the RCS(Radar Cross Section) of the scatterer. Since the IPO method can not exactly but approximately solve the required integral equation, however, the convergence of the IPO solution can not be guaranteed. Hence, we apply the famous techniques used in the inversion of a matrix to the IPO method, which include Jacobi, Gauss-Seidel, SOR(Successive Over Relaxation) and Richardson methods. The proposed IPO methods can efficiently calculate the RCS of a large scatterer, and are numerically verified.