• Title/Summary/Keyword: First-order kinetic model

Search Result 225, Processing Time 0.03 seconds

Kinetic and Equilibrium Study of Lead (II) Removal by Functionalized Multiwalled Carbon Nanotubes with Isatin Derivative from Aqueous Solutions

  • Tahermansouri, Hasan;Beheshti, Marzieh
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3391-3398
    • /
    • 2013
  • The carboxylated multiwall carbon nanotubes (MWCNT-COOH) and functionalized with isatin derivative (MWCNT-isatin) have been used as efficient adsorbents for the removal of lead (Pb) from aqueous solutions. The influence of variables including pH, concentration of the lead, amount of adsorbents and contact time was investigated by the batch method. The adsorption of the lead ions from aqueous solution by modified MWCNTs was studied kinetically using different kinetic models. The kinetic data were fitted with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The sorption process with MWCNT-COOH and MWCNT-isatin was well described by pseudo-second-order and pseudo-first-order kinetics, respectively which it was agreed well with the experimental data. Also, it involved the particle-diffusion mechanism. The values of regression coefficient of various adsorption isotherm models like Langmuir, Freundlich and Tempkin to obtain the characteristic parameters of each model have been carried out. The Langmuir isotherm was found to best represent the measured sorption data for both adsorbent.

Comparative Assessment of the Half-lives of Benfuresate and Oxolinic Acid Estimated from Kinetic Models Under Field Soil Conditions (포장조건에서 Kinetic Models로부터 산출한 Benfuresate 및 Oxolinic Acid의 토양중 반감기 비교평가)

  • Yang, Jae-E.;Park, Dong-Sik;Han, Dae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.302-311
    • /
    • 1995
  • Benfuresate or oxolinic acid, as an experimental pesticide, was applied to the different textural paddy or upland soil respectively under the field condition and the residual concentrations were determined. Six kinetic models were employed to characterize the best-fit kinetic model describing the residual pattern of benfuresate or oxolinic acid and the $t\frac{1}{2}$ estimated from each model was comparatively assessed. All of the six models explained significantly the residual patterns of the pesticides but the empirical models such as PF, EL, and PB were not recommendable for the $t\frac{1}{2}$ estimation. Among theoretical models, the residual patterns were followed in the orders of the second-order(SO)>first-order(FO)>zero-order(ZO) kinetics, judging from the size and significance of coefficient of determination and standard error. However, the multiple FO model, consisting of the fast and slow decomposition steps, was better than the single FO model for the residual pattern and the $r^2$ in this case became similar to that of SO kinetic model. Thus the multiple FO and SO models were represented as the best fit model of the experimental pesticide. The $t\frac{1}{2}$ of benfuresate estimated from the single FO kinetic model in Weolgog and Cheongwon series was 49 and 63 days, respectively, which were 20 and 13% longer than the respective $t\frac{1}{2}$ from the SO kinetic model. The $t\frac{1}{2}$ of oxolinic acid from the FO model in Yonggye and Ihyeon series were 87 and 51% longer than those from the SO kinetic model, respectively. These results demonstrated that the best-fit model representing the residual pattern of a pesticide and the resultant $t\frac{1}{2}$ might be variable with the kinds of pesticides and the environmental conditions. Therefore it is recommended that the half-life of a pesticide be assessed from the best-fit model rather than from the FO kinetic model uniformly.

  • PDF

Kinetic Modeling for Quality Prediction During Kimchi Fermentation

  • Chung, Hae-Kyung;Yeo, Kyung-Mok;Kim, Nyung-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.41-45
    • /
    • 1996
  • This study was conducted to develop the fermentation kinetic model for the prediction of acidity and pH changes in Kimchi as a function of fermentation temperatures. The fitness of the model was evaluated using traditional two-step method and an alternative non-linear regression method. The changes in acidity and pH during fermentation followed the pattern of the first order reaction of a two-step method. As the fermentation temperature increased from 4$^{\circ}C$ to 28, the reaction rates of acidity and pH were increased 8.4 and 7.6 times, respectively. The activation energies of acidity and pH were 16.125 and 16.003kcal/mole. The average activation energies of acidity and pH using a non-linear method were 16.006 by the first order and 15.813 kcal/mole by the zero order, respectively. The non-linear procedure had better fitting 개 experimental data of the acidity and pH than two-step method. The shelf-lives based on the time to reach the 1.0% of acidity were 33.1day at 4$^{\circ}C$ and 2.8 day 28$^{\circ}C$.

  • PDF

Determination of Kinetic Parameters in Coal Weathering Processes

  • Yun, Yongseung
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.31-36
    • /
    • 1993
  • Three different methods were employed to measure the degree of aerial oxidation in coal and the resulting oxidation/weathering indices were applied to obtain kinetic parameters of aerial oxidation processes, The index (i.e., slurry pH, Free Swelling Index, weight gain) values were subjected to kinetic analysis based on power-law Arrhenius type reaction model. The results show that activation energy of the aerial oxidation in 20-29$0^{\circ}C$ is in the range of 12-16 ㎉/㏖ and the agreement among three techniques is remarkable. The first order kinetic model is suitable in describing low temperature aerial oxidation process, except in the FSI case where the zero order expression is the best one.

  • PDF

Kinetic Study of the Anaerobic Digestion of Swine Manure at Mesophilic Temperature: A Lab Scale Batch Operation

  • Kafle, Gopi Krishna;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.233-244
    • /
    • 2012
  • Purpose: The kinetic evaluation was performed for swine manure (SM) degradation and biogas generation. Methods: The SM was anaerobically digested using batch digesters at feed to inoculum ratio (F/I) of 1.0 under mesophilic conditions ($36.5^{\circ}C$). The specific gas yield was expressed in terms of gram total chemical oxygen demand (mL/g TCOD added) and gram volatile solids added (mL/g VS added) and their effectiveness was discussed. The biogas and methane production were predicted using first order kinetic model and the modified Gompertz model. The critical hydraulic retention time for biomass washout was determined using Chen and Hashimoto model. Results: The biogas and methane yield from SM was 346 and 274 mL/ TCOD added, respectively after 100 days of digestion. The average methane content in the biogas produced from SM was 79% and $H_2S$ concentration was in the range of 3000-4108 ppm. It took around 32-47 days for 80-90% of biogas recovery and the TCOD removal from SM was calculated to be 85%. When the specific biogas and methane yield from SM (with very high TVFA concentration) was expressed in terms of oven dried volatile solids (VS) basis, the gas yield was found to be over estimated. The difference in the measured and predicted gas yield was in the range of 1.2-1.5% when using first order kinetic model and 0.1% when using modified Gompertz model. The effective time for biogas production ($T_{Ef}$) from SM was calculated to be in the range of 30-45 days and the critical hydraulic retention time ($HRT_{Critical}$) for biomass wash out was found to be 9.5 days. Conclusions: The modified Gompertz model could be better in predicting biogas and methane production from SM. The HRT greater than 10 days is recommended for continuous digesters using SM as feedstock.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(II) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(II)-흡착속도론을 중심으로)

  • Na, Choon-Ki;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.804-811
    • /
    • 2011
  • The aim of this study is to evaluate the applicability of adsorption models for understanding adsorption properties of adsorbents. For this study, the adsorption charateristics of $NO_3^-$ by commercial anion exchange resin, PA-308, were investigated in bach process. The adsorption kinetic data for $NO_3^-$ by anion exchange resin showed two stage process comprising a fast initial adsorption process and a slower second adsorption process. Both the pseudo-first-order kinetic model and the pseudo-second-order kinetic model could not be used to predict the adsorption kinetics of $NO_3^-$ onto anion exchange resin for the entire sorption period. Only the fast initial portion ($t{\leq}20min$) of adsorption kinetics was found to follow pseudo-first-order kinetic model and controlled mainly by external diffusion that is very fast and high, whereas, the slower second portion (t > 20 min) of adsorption kinetics seems to be controlled by a second-order chemical reaction and by intraparticle diffusion.

Removal of Heavy metal Ions from Aqueous Solutions by Adsorption on Magadiite

  • 정순용;이정민
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.218-222
    • /
    • 1998
  • Removal of Cd(Ⅱ), Zn(Ⅱ) and Cu(Ⅱ) from aqueous solutions using the adsorption process on magadiite has been investigated. It was found that the removal percentage of metal cations at equilibrium increases with increasing temperature, and follows the order of Cd(Ⅱ) > Cu(Ⅱ) > Zn(Ⅱ). Equilibrium modeling of adsorption showed that the adsorptions of Cd(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) were fitted to Langmuir isotherm. Kinetic modeling of the adsorption showed that first order reversible kinetic model fitted to experimental data. From kinetic model and equilibrium data, the overall rate constant (k) and the equilibrium constant (K) for the adsorption process were calculated. The overall rates of adsorption of metal ions follow the order of Cd(Ⅱ) > Cu(Ⅱ) > Zn(Ⅱ). From the results of thermodynamic analysis, standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) of adsorption process were calculated.

Modeling on the Sorption Kinetics of Lead and Cadmium onto Natural Sediments (퇴적물에서의 납과 카드뮴의 흡착 동력학 모델링)

  • Kwak, Mun-Yong;Ko, Seok-Oh;Park, Jae-Woo;Jeong, Yeon-Gu;Shin, Won-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.450-461
    • /
    • 2006
  • In this study, sorption kinetics of lead (Pb) and cadmium (Cd) onto coastal sediments were investigated at pH 5.5 using laboratory batch adsorbers. Four different models: one-site mass transfer model (OSMTM), pseudo-first-order kinetic model (PFOKM) ,pseudo-second-order kinetic model (PSOKM) and two compartment first-order kinetic model (TCFOKM) were used to analyze the sorption kinetics. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM, PFOKM and PSOKM in describing sorption kinetics of Pb and Cd onto sediments. Most sorption of Pb and Cd was rapidly completed within the first three hours, followed by slow sorption in the subsequent period of sorption. All models predicted that the sorbed amount at the apparent sorption ($q_{e,s}$) equilibria increased as the CEC and surface area of the sediments increased, regardless of initial spiking concentration ($C_0$) and heavy metal and the sediment type. The sorption rate constant ($k_s,\;hr^{-1}$) in OSMTM also increased as the CEC and BET surface area increased. The rate constant of pseudo-first-order sorption ($k_{p1,s},\;hr^{-1}$) in PFOKM were not correlated with sediment characteristics. The results of PSOKM analysis showed that the rate constant of pseudo-second-order sorption ($k_{p2,s},\;g\;mmol^{-1}\;hr^{-1}$) and the initial sorption rate ($v_{o,s},\;mg\;g^{-1}\;hr^{-1}$) were not correlated with sediment characteristics. The fast sorption fraction ($f_{1,s}$) in TCFOKM increased as CEC and BET surface increased regardless of initial aqueous phase concentrations. The sorption rate constant of fast fraction ($k_{1,s}=10^{0.1}-10^{1.0}\;hr^{-1}$) was much greater than that of slow sorption fraction ($k_{2,s}=10^{-2}-10^{-4}\;hr^{-1}$) respectively.

Applicability of adsorption kinetic model for cation/anion for chitosan hydrogel bead (키토산비드를 이용한 양이온/음이온의 흡착모델 적용)

  • An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • Batch adsorption tests were performed to evaluate the applicability of adsorption kinetic model by using hydrogel chitosan bead crosslinked with glutaraldehyde (HCB-G) for Cu(II) as cation and/or phosphate as anion. Pseudo first and second order model were applied to determine the sorption kinetic property and intraparticle and Boyd equation were used to predict the diffusion of Cu(II) and phosphate at pore and boundary-layer, respectively. According to the value of theoretical and experimental uptake of Cu(II) and phosphate, pseudo second order is more suitable. On comparison with the value of adsorption rate constant (k), phosphate kinetic was 2-4 times faster than that of Cu(II) at any experimental condition indicating the electrostatic interaction between ${NH_3}^+$ and phosphate is dominated at the presence of single component. However, when Cu(II) and phosphate simultaneously exist, the value of k for phosphate was sharply decreased and then the difference was not significant. Both diffusion models confirmed that the sorption rate was controlled by film mass transfer at the beginning time (t < 3 hr) and pore diffusion at next time section (t > 6 hr).

Prediction of Chlorine Concentration in a Pilot-Scaled Plant Distribution System (Pilot 규모의 모의 관망에서의 염소 농도 예측)

  • Kim, Hyun Jun;Kim, Sang Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.861-869
    • /
    • 2012
  • The chlorine's residual concentration prevents the regrowth of microorganism in water transport along the pipeline system. Precise prediction of chlorine concentration is important in determining disinfectant injection for the water distribution system. In this study, a pilot scale water distribution system was designed and fabricated to measure the temporal variation of chlorine concentration for three flow conditions (V = 0.88, 1.33, 1.95 m/s). Various kinetic models were applied to identify the relationship between hydraulic condition and chlorine decay. Genetic Algorithm (GA) was integrated into five kinetic models and time series of chlorine were used to calibrate parameters. Model fitness was compared by Root Mean Square Error (RMSE) between measurement and prediction. Limited first order model and Parallel first order showed good fitness for prediction of chlorine concentration.