• Title/Summary/Keyword: First-Order-Hold Method(FOH)

Search Result 5, Processing Time 0.025 seconds

Effects of a First-order-hold Method and a Virtual Damper on the Stability Boundary of a Virtual Spring (일차홀드 방식과 가상 댐퍼가 가상 스프링의 안정성 영역에 미치는 영향)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.396-401
    • /
    • 2019
  • A virtual rigid is modeled as the parallel structure of a virtual spring and a virtual damper. The reflective force from the virtual model is designed to be as large as possible to improve the realism of the virtual environment while maintaining the stable interaction. So, it is important to analyze the stability boundary of the virtual spring and damper. In the previous researches, the stability boundary is analyzed based on the zero-order-hold (ZOH) method, but it is analyzed based on the first-order-hold (FOH) method and the virtual damper in the paper. The boundary value of the stable virtual damper is inverse proportional to the sampling time and the maximum value of stable virtual stiffness is inverse proportional to the square of the sampling time. And the maximum value in the FOH method is increased to 110% of the value in the ZOH method. If the virtual damper is smaller than about 50% of the boundary value of the virtual damper in the FOH method, the stable virtual stiffness in the FOH method is several times larger than that in the ZOH method.

Impact Analysis of Communication Time Delay and Properties of a Haptic Device on Stability Boundary for a Haptic System with a First-Order Hold (일차홀드 방식을 포함한 햅틱 시스템의 안정성 영역에 대한 통신시간지연과 햅틱장치 물성치의 영향 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.572-578
    • /
    • 2017
  • Haptic systems help users feel a realistic sensation when they manipulate virtual objects in the remote virtual environment. However, there are communication time delays that may make the haptic system unstable. This paper shows the relationship between communication time delay, properties of a haptic device, and the stability of the haptic system with the first-order hold method in a simulation. The maximum available stiffness of a virtual spring with the first-order hold method is larger than in the zero-order hold method when there is no time delay. However, when the communication time delay is much larger than the sampling time, the maximum available stiffness to guarantee the stability becomes the same, irrespective of the sample-hold methods. Besides, the maximum available stiffness increases in inverse proportion to the communication time delay and in proportional to the damping coefficient of the haptic device.

Effects of a Human Impedance and a First-Order-Hold Method on Stability of a Haptic System with a Virtual Spring Model (인간 모델과 1차 샘플-홀드 방식이 가상 스프링 모델 시스템의 안정성에 미치는 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • When a human operator interacts with a virtual wall that is modeled as a virtual spring model, the lager the stiffness of the virtual spring is, the more realistic the operator feels that the virtual wall is. In the previous studies, it is shown that the maximum available stiffness of a virtual spring to guarantee the stability can be increased when the first-order-hold method is applied, however the effects of a human impedance on the stability are not considered. This paper presents the effects of a human impedance on stability of haptic system with a virtual spring and a first-order-hold (FOH) method. The human impedance model is modeled as a linear second-order system model. The relations between the maximum available stiffness of a virtual spring and the human impedance such as a mass, a damping and a stiffness are analyzed through the MATLAB simulation. It is shown that the maximum available stiffness is proportional to the square root of the human mass or damping respectively.

  • PDF

Effects of Data-hold Methods on Stability of Haptic System (데이터 홀드 방식에 따른 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.35-39
    • /
    • 2012
  • This paper presents the effect of data-hold methods on stability of haptic system with a virtual wall. When a human operator interacts with virtual wall, the lager the stiffness of the virtual wall is, the more realistic the operator feels that the virtual wall is. However, if the stiffness of the virtual wall becomes extremely large, the system may be unstable. When a virtual wall is designed, it is necessary to analyze the maximum available stiffness to guarantee a stable haptic interaction. The simulation model in this paper is developed based on the haptic device model, sampler, a virtual wall model, and data hold methods to compute the maximum stiffness for stability. The effectiveness of the simulation is evaluated through comparing the results of previous studies with the results of this simulation. In addition, the effects of two data hold methods, that is, zero-order hold (ZOH) and first-order hold (FOH) on the stability are analyzed and the values of the maximum available stiffness are compared through the simulation.

  • PDF

Stability of Haptic System with consideration for Sample-and-Hold Methods and Properties of Haptic Device (샘플-홀드 방식과 햅틱 장치 물성치에 따른 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5338-5343
    • /
    • 2013
  • In a haptic system, a virtual wall is modeled as a virtual spring. The larger the stiffness of the virtual spring is, the more improved the reality of the virtual wall is, but the more unstable the haptic system becomes. This paper shows how to increase the stiffness of the virtual spring while the stability of the haptic system is guaranteed and shows the effects of a mass (Md) and a damper (Bd) of a haptic device on the stability when first-order hold method is applied and a virtual wall is modeled as a virtual spring (Kw). The simulation results show the boundary of the virtual spring is proportional to the square root of the mass (Md) and the damper (Bd) while maintaining the stability. The relation among the virtual spring (Kw), the mass (Md) and the damper (Bd) of the haptic device, and sampling time (T) is inferred as $K_w{\leq}{1.611M_d}^{0.50}{B_d}^{0.50}T^{-1.51}$, by using the simulation results. The maximum available stiffness of the virtual spring in first-order hold method is larger than in zero-order hold method. So the reality of the virtual wall can be improved.