• Title/Summary/Keyword: First order system dynamics

Search Result 139, Processing Time 0.026 seconds

Structural Dynamics Optimization by Second Order Sensitivity with respect to Finite Element Parameter (유한요소 구조 인자의 2차 민감도에 의한 동적 구조 최적화)

  • Kim, Yong-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.8-16
    • /
    • 2006
  • This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue derivatives are determined with respect to the element parameters, which include intrinsic property parameters such as Young's modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its corresponding eigenvector, which are developed by Nelson's direct approach. The modified eigenvalue of the structure is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated. Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.

A Robust Control System Design for Compensating Hysteresis of a Piezoelectric Actuator-based Actuation Unit (압전 소자 기반 구동 유닛의 히스테리시스 보상 강인 제어기 설계)

  • Kim, Hwa-Soo;Kim, Jong-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.324-330
    • /
    • 2012
  • In this paper, we presents a robust control system design for compensating hysteresis of a piezoelectric actuator-based actuation unit. First, the dynamics between the input voltage and the output displacement of the actuation unit are unravelled via a non-parametric system identification method. From the dynamic characteristics of those experimental transfer functions, a parametric model is then derived, whose dynamics match those of the non-parametric ones under various conditions on input voltages. A robust controller is constructed on the basis of this parametric model in order not only to effectively compensate the hysteresis of the actuation unit but also to guarantee the robust stability. Extensive experiments show that the proposed robust control system successfully mitigate the effect of the hysteresis and improve the tracking capability of the actuation unit.

The Optimization of Feed System by the Dynamics of Structure and Responsibility (머시닝센터에서 구조물 진동과 응답성을 고려한 이송계 최적화 연구)

  • 김성현;윤강섭;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.365-369
    • /
    • 2002
  • This paper introduces that the machine tools's feed system optimizes by modeling for simulation and adjusting drive control parameter. The first method is frequency response of speed loop with design parameter by use of MATLAB application, in order that other axis can do equal to bandwidth. The second meted uses various sensor for analyzing machine tools's structure and adjustes jirk limitter.

  • PDF

Enhanced Second-order Implicit Constraint Enforcement for Dynamic Simulations

  • Hong, Min;Welch, Samuel W.J.;Jung, Sun-Hwa;Choi, Min-Hyung;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.51-62
    • /
    • 2008
  • This paper proposes a second-order implicit constraint enforcement method which yields enhanced controllability compared to a first-order implicit constraints enforcement method. Although the proposed method requires solving a linear system twice, it yields superior accuracy from the constraints error perspective and guarantees the precise and natural movement of objects, in contrast to the first-order method. Thus, the proposed method is the most suitable for exact prediction simulations. This paper describes the numerical formulation of second-order implicit constraints enforcement. To prove its superiority, the proposed method is compared with the firstorder method using a simple two-link simulation. In this paper, there is a reasonable discussion about the comparison of constraints error and the analysis of dynamic behavior using kinetic energy and potential energy.

A Causal Map Analysis on the Accelerating Policies for Universities to Adopt NCS-based Educational Programs (인과지도를 활용한 4년제 대학 NCS 도입 활성화 방안 연구)

  • Juhn, Jaeho
    • Korean System Dynamics Review
    • /
    • v.17 no.3
    • /
    • pp.5-29
    • /
    • 2016
  • The Korean government has constructed the national competency standards (NCS) rapidly since the year 2013. Also, it has pushed 2-year colleges to adopt NCS-based educational programs and public institutions to hire new employees by using NCS. It expects that NCS will deplete the mismatch between the requirements of employers and the abilities of employees. The purpose of this paper is to find correct accelerating policies for universities to adopt NCS-based educational programs. In order to achieve the purpose, primarily the government policies for NCS were analyzed by using causal map. And then, three accelerating policy recommendations for universities to adopt NCS were drawn by using the results of causal map analysis. The three recommendations are as follows. First, the quality of NCS should be kept highly. Secondly, the NCS-based hiring system of public institutions should also be standardized. Finally, the authorities of universities should be guaranted whenever they make educational programs.

Indirect Adaptive Self-Regulating Fuzzy Control of Uncertain Nonlinear Systems Using Second Order Sliding Mode (2차 슬라이딩 모드를 이용한 불확실성을 갖는 비선형 시스템의 간접적응 자기조정 퍼지제어)

  • Park, Won-Sung;Yang, Hai-Won;Chung, Ki-Chull;Kim, Do-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1716-1717
    • /
    • 2007
  • In this paper, a second order fuzzy sliding mode control that combines with a adaptive self-regulating technique is proposed for a nonlinear system with unknown dynamics. The chattering effect that is a representative disadvantage of the sliding mode control is avoided by using the second order sliding mode control instead of the first order sliding mode control. The proposed sub-controller is composed of the equivalent control that is approximated by an online rule regulation sheme and the hitting control that is used to constrain the states of the sub-system to maintain on the sub-sliding surface and used to guarantee the system robustness. Simulation results are presented to show the effectiveness of the proposed controller

  • PDF

Automatic Fortified Password Generator System Using Special Characters

  • Jeong, Junho;Kim, Jung-Sook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.295-299
    • /
    • 2015
  • The developed security scheme for user authentication, which uses both a password and the various devices, is always open by malicious user. In order to solve that problem, a keystroke dynamics is introduced. A person's keystroke has a unique pattern. That allows the use of keystroke dynamics to authenticate users. However, it has a problem to authenticate users because it has an accuracy problem. And many people use passwords, for which most of them use a simple word such as "password" or numbers such as "1234." Despite people already perceive that a simple password is not secure enough, they still use simple password because it is easy to use and to remember. And they have to use a secure password that includes special characters such as "#!($^*$)^". In this paper, we propose the automatic fortified password generator system which uses special characters and keystroke feature. At first, the keystroke feature is measured while user key in the password. After that, the feature of user's keystroke is classified. We measure the longest or the shortest interval time as user's keystroke feature. As that result, it is possible to change a simple password to a secure one simply by adding a special character to it according to the classified feature. This system is effective even when the cyber attacker knows the password.

Unscented Filtering Approach to Magnetometer-Only Orbit Determination

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2331-2334
    • /
    • 2003
  • The basic difference between the EKF(Extended Kalman Filter) and UKF(Unscented Kalman Filter) stems from the manner in which Gaussian random variables(GRV) are represented for propagating through system dynamics. In the EKF, the state distribution is approximated by a GRV, which is then propagated analytically through the first-order linearization of the nonlinear system. This can possibly introduce large errors in the true posterior mean and covariance of the transformed GRV, which may lead to sub-optimal performance and sometimes divergence of the filter. However, the UKF addresses this problem by using a deterministic sampling approach. The state distribution is also approximated by a GRV, but is now represented using a minimal set of carefully chosen sample points. These sample points completely capture the true mean and covariance of the GRV, and UKF captures the posterior mean and covariance accurately up to the 2nd order(Taylor series expansion) for any nonlinearity. This paper utilizes the UKF to determine spacecraft orbit when only magnetometer is available. Several catastrophic failures of spacecraft in orbit have been attributed to failures of the spacecraft mission. Recently studies on contingency-major sensor failure cases- have been performed. For mission success, contingency design or plan should be implemented in case of a major sensor failure. Therefore the algorithm presented in this paper can be used for a spacecraft without GPS or contingency design in case of GPS failure.

  • PDF

Numerical Investigation on Natural Circulation in a Simplified Passive Containment Cooling System (단순화된 피동 원자로건물 냉각계통 내 자연순환에 관한 수치적 연구)

  • Suh, Jungsoo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.92-98
    • /
    • 2018
  • The flow of cooling water in a passive containment cooling system (PCCS), used to remove heat released in design basis accidents from a concrete containment of light water nuclear power plant, was conducted in order to investigate the thermo-fluid equilibrium among many parallel tubes of PCCS. Numerical simulations of the subcooled boiling flow within a coolant loop of a PCCS, which will be installed in innovative pressurized-water reactor (PWR), were conducted using the commercially available computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the RPI model were used for turbulence closure and subcooled flow boiling, respectively. As the first step, the simplified geometry of PCCS with 36 tubes was modeled in order to reduce computational resource. Even and uneven thermal loading conditions were applied at the outer walls of parallel tubes for the simulation of the coolant flow in the PCCS at the initial phase of accident. It was observed that the natural circulation maintained in single-phase for all even and uneven thermal loading cases. For uneven thermal loading cases, coolant velocity in each tube were increased according to the applied heat flux. However, the flows were mixed well in the header and natural circulation of the whole cooling loop was not affected by uneven thermal loading significantly.

Mode analysis and low-order dynamic modelling of the three-dimensional turbulent flow filed around a building

  • Lei Zhou;Bingchao Zhang;K.T. Tseb
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.381-398
    • /
    • 2024
  • This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.