• Title/Summary/Keyword: Firing Vehicle

Search Result 75, Processing Time 0.023 seconds

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (1) Integrated Performance Modeling (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (1) 통합성능분석 모델개발)

  • Lim, Sunghoon;Lim, Woochul;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.316-323
    • /
    • 2014
  • This paper proposes the 3D modeling and simulation technique for predicting the integrated performance of combat vehicle. To consider the practical driving and firing condition of a combat vehicle, the full vehicle model, which can define the six degrees-of-freedom of vehicle motion and various firing angles, is developed. The critical design parameters such as the stiffness and damping coefficient of suspension system are applied to construct the analysis model of vehicle. A simple ballistic model, which incorporates the empirical interior ballistic model and the point mass trajectory model, is built to estimate the firing range and the firing recoil force. To predict the integrated performance and analyze the effect of system parameters, MATLAB/SIM-ULINK model of a combat vehicle for performing the real time simulation is also developed. Several simulation tests incorporating the road bump and the firing recoil force are presented to confirm the effectiveness of the proposed vehicle model.

A Study on Improvement of Aiming ability using Disturbance Measurement in the Firing Vehicle (사출 차량에서의 외란을 이용한 정밀 지향성 향상 연구)

  • Yoo, Jin-Ho;Lee, Dong-Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.62-70
    • /
    • 2007
  • The aiming ability is a to improve accuracy performance of the firing vehicle. This paper describes the detection method of chatter vibration using disturbance acceleration in the pointing structure. In order to analysis vibration trends of the pointing system occurred during vehicle drive, acceleration data was processed by using data processing algorithm with moving average and Hilbert transform. Specific mode constants of acceleration were obtained under various disturbances. Vehicle velocity, road condition, property of pointing structure were considered as factors which make change of vibration trend in vehicle dynamics. Finally, back propagation neural networks have been applied to the pattern recognition for the classification of vibration signal in various driving conditions. Results of signal processing were compared and analysed.

Design Study for KSLV Integrated Power Plant Test Facility

  • Kang, Sun-Il;Lee, Jung-Ho;Kim, Young-Han;Oh, Seung-Hyup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.573-576
    • /
    • 2004
  • KARI is achieving the KSLV program according to National Space Technology Development Program. In this paper, the authors are intended to introduce the Integrated Power Plant (abb. IPP) test facility which will be constructed for the variety of tests on KSLV program. IPP test facility refers to comprehensive testing equipment for liquid rocket launch vehicle. Using this facility, KARl can verify the adaptiveness of parts and subsystems for launch vehicle and finally can qualify the system characteristics of launch vehicle doing kinds of test including hot firing test. Using this facility, KARI can simulate the vehicle launching circumstances and it make to predict the performance of launch vehicle when its flight test.

  • PDF

A ballistic lead-computation method to improve firing accuracy of army combat vehicles (전투차량의 사격통제 성능향상을 위한 탄도해 리드 계산 기법)

  • Jeoun, Young-Mi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.31-37
    • /
    • 2007
  • This paper presents a ballistic lead-computation method which utilizes automatic video tracking, tracking assistance and roll uncoupling. The method is able to improve the firing accuracy of army fighting vehicles such as main battle tanks. In the experiment, the efficiency of the proposed method is evaluated by an error analysis in real operating environment. The proposed method has been applied to the fire control system of a military vehicle and proved through the development test of the vehicle.

The System Position from High Firing Rate of Anti-Aircraft Gun system (고발사율 대공포 발사에 따른 체계자세 연구)

  • Hwang, Boo Il;Lee, Boo Hwan;Kim, Chi Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.611-615
    • /
    • 2015
  • Anti-aircraft gun system is used for low-level air defense system and has more than twin guns with high firing rate in order to maximize the capability of defense. Gun's vibration and bullet's variance has a critical effect on accuracy and hit probability of weapon system such as anti-aircraft gun system with high firing rate. Typical mechanism to reduce the amount of vibration and shock during gun-fire process is very important design factor. In this paper, the suspension characteristics of the vehicle are studied for the improvement of isolating performance of gun firing system with high firing rate. Gun fire test for the vehicle is conducted and computational models using Recurdyn and Adams are created based on test results. Through this study, results of computational analysis are compared with the real test results, which includes type, location and quantity of suspension and gun mechanism are selected for anti-aircraft gun. From the result of this study, we could make basic design and consider the proper component of the system such as suspension and gun spring.

Propellants helium saturated efforts and its effects for HTV(H-II transfer vehicle) propulsion system ground firing tests

  • Nakai, Shunichiro;Ishizaki, Shinichiro;Yamamoto, Mio;Okudera, Hiroyuki;Imada, Takane;Matsuo, Shinobu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.399-402
    • /
    • 2008
  • It is well known that helium saturated propellants significantly effects the dynamics of propulsion system, thruster cross coupling, water hammer and thruster performance. Especially for the propulsion systems, which have multiple high thrust engines, such as HTV(H-II transfer vehicle), the effect is more important. Therefore full-saturated propellants should be used at ground tests of HTV propulsion system and evaluate its effects. HTV is an advanced space vehicle being developed by Japan Aerospace Exploration Agency(JAXA) to enhance cargo delivery capabilities of the fleet of vehicles visiting the International Space Station(ISS). This paper presents an overview of the successful effort of the testing with saturated propellants(MMH/MON3) for HTV propulsion system during the ground firing tests.

  • PDF

Reliability Prediction of Liquid Rocket Engines for Different Propellant and Engine Cycles (추진제 및 연소 사이클을 고려한 액체로켓 엔진의 신뢰도 예측)

  • Kim, Kyungmee O.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.181-188
    • /
    • 2016
  • It is known that reliability of liquid rocket engines depends on the design thrust, propellant, engine cycle, and hot firing test time. Previously, a method was developed for estimating reliability of a new engine by adjusting the design thrust and hot firing test time of reference engines where reference engines have the same propellant and engine cycle with the new engine. In this paper, we provide a procedure to predict the engine reliability when the new engine and the reference engine have different propellant and engine cycles. The proposed method is illustrated to estimate the engine reliability of the first stage of Korea Space Launch Vehicle II.

A Study on the flame behaviors of light railway vehicle (경량전철 차량화재의 화염거동에 대한 연구)

  • 목재균;김연수;이우동;허남건
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.281-289
    • /
    • 2002
  • This paper is described for the flame behaviors in light railway cabin by numerical simulation code, which can be interpreted the design parameters in terms of suppression the fire propagation and excavation the passengers safely. The results shows that the flame intensity(fire temperature, smoke density) depends on the firing points in cabin and propagates rapidly whole cabin space rather than modern subway cabin due to smaller inner space. The data will be used to how can be get the safety case, which is described on the operating principles for all facilities and logistics against to the light railway firing accidents.

  • PDF

Firing Test of KSR-III Rocket Propulsion System (KSR-III 로켓 추진기관 연소시험)

  • Kang Sun-Il;Kwon Oh-Sung;Lee Jung-Ho;Kim Young-Han;Ha Seong-Up;Cho Kwang-Rae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.126-135
    • /
    • 2004
  • The KSR-III rocket developed by KARI is the first rocket vehicle which is adopting the liquid propellant rocket engine system in Korea and its flight test was successfully done last year, KSR-III is a sounding rocket class launch vehicle, but there is a sense to accomplish design, manufacture, performance test and finally its flight test by domestic technology. In this paper, the authors are intended to introduce the multi-purpose test facility(PTA-II Test Facility) which is constructed for the variety of tests on KSR-III feeding system(single component tests, verification tests, cold flow tests and combustion tests) and its firing test results.

Low Pressure Firing Tests of 75-tonf-Class Channel Cooling Thrust Chamber (75톤급 채널냉각 연소기 저압연소시험)

  • Lim, Byoung-Jik;Han, Yeoung-Min;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2011
  • Firing tests have been carried out for a technology demonstration model of 75-tonf-class combustor which is to be used on the liquid rocket engine of a Korean space launch vehicle. Firing tests were done at 50% of the nominal flow rate because of incapability of the test facility and limit of the test bed strength. Through the low pressure firing tests of 75-tonf-class channel cooling thrust chamber, operability and stability at the ignition and combustion phases were confirmed. Additionally it was foreseen that the 75-tonf-class thrust chamber would satisfy the performance requirements.