• Title/Summary/Keyword: Firing Effectiveness

Search Result 34, Processing Time 0.028 seconds

A Study for the Possibility of Reducing the Size of Battery Position (포병진지 규모의 축소 가능성에 관한 연구)

  • Go Jae-Hong;Gang Seong-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.1
    • /
    • pp.74-85
    • /
    • 1992
  • Increasing the number of artillery units requires more deployment space in the field operation area. However, there is limited space available in FEBA due to mountainous terrains. Therefore most artillery units cannot occupy enough deployment space which is proposed in the field artillery mannual(FM) to maximize the firing-effectiveness and to minimize the enemy threat. This paper studies the problems of reducing the size of a battery deployment space being applied currently without decreasing the firing-effectiveness of the battery. The optimum size of a battery position is obtained by using Lemus and David's allocation model and Supper Quick II Model which produces the probability of kill data with various input data. The result shows that the battery deployment space can be reduced without decreasing the firing-effectiveness in the example problem.

  • PDF

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (1) Integrated Performance Modeling (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (1) 통합성능분석 모델개발)

  • Lim, Sunghoon;Lim, Woochul;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.316-323
    • /
    • 2014
  • This paper proposes the 3D modeling and simulation technique for predicting the integrated performance of combat vehicle. To consider the practical driving and firing condition of a combat vehicle, the full vehicle model, which can define the six degrees-of-freedom of vehicle motion and various firing angles, is developed. The critical design parameters such as the stiffness and damping coefficient of suspension system are applied to construct the analysis model of vehicle. A simple ballistic model, which incorporates the empirical interior ballistic model and the point mass trajectory model, is built to estimate the firing range and the firing recoil force. To predict the integrated performance and analyze the effect of system parameters, MATLAB/SIM-ULINK model of a combat vehicle for performing the real time simulation is also developed. Several simulation tests incorporating the road bump and the firing recoil force are presented to confirm the effectiveness of the proposed vehicle model.

Firing Data Calculation Algorithm for Smart Weapon System Under Non-standard Conditions (스마트무장 비 표준조건 사격제원 산출 알고리즘)

  • Moon, Kyujin;Jeong, Ui-Taek;Lee, Yongseon;Choi, Sungho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.233-240
    • /
    • 2022
  • The smart weapon system is a new weapon system of the future battlefield environment as a miniature guided weapon that performs precision strike missions through terminal phase guidance. However, it has small coverage to guide due to its low maneuverability because the smart weapon is controlled by using actuator of piezoelectric drive type due to the structural limitations. In this paper, we propose a firing data calculation algorithm under non-standard conditions to increase the effectiveness of the smart weapon. The proposed algorithm calculates firing data under non-standard conditions by calibrating firing data under standard conditions using information acquired in battlefield environments. The performance of the proposed algorithm is verified by numerical simulations under various conditions.

A Study on Determination of the Size of Battery Position in Consideration of Enemy Threat (적 위협을 고려한 포병진지 규모결정에 관한 연구)

  • 허화만;김충영
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.2
    • /
    • pp.155-170
    • /
    • 1997
  • Currently, increasing the number of artillery units requires more deployment space in FABA. However, available positions of artillery units in FEBA is limited due to mountainous terrains. Therefore, it is hard to find enough artillery position space in accordance with the field artillery mannual. This paper studies on determination of the size of battery position in order to maximize the firing-effectiveness and to minimize the enemy threat. Also, it studies the possibility of reducing the size of a battery position. The optimum size of a battery position id obtained by using Dantzig's model and Supper Quick II model which produces the probability of kill data with various input data. As a result, it shows that the size of battery position can be reduced without decreasing the firing-effectiveness.

  • PDF

A Weapon Effectiveness Evaluation Model for Top-Attack Smart Munitions (상부공격 지능탄 무기효과 평가모델)

  • Kang, Min-Ah
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.458-466
    • /
    • 2012
  • We have developed a weapon effectiveness evaluation model for top-attack smart munitions(WEEM/TASM), which is a many on many Monte Carlo Model evaluating the effectiveness of top-attack smart munitions against armoured ground vehicles. In this model the battle is reduced to a one-sided battle situation in that the target vehicles are regarded as being stationary and passive. It can simulate the whole attack process of smart munitions from firing artillery dispenser to sensing and hitting processes after dispense. It can also calculate the probability of kill of each target and the numbers of rounds required to fulfill the degree of damage in statistical manners. In this paper, we describe the basis for our design concepts reflected in the model to simulate the weapon effectiveness of top-attack smart munitions and provide simulation results for an example case.

Development of the Measuring Device of Muzzle Velocity using Magnetic Field Gradient Sensor (자계 차분형 센서를 이용한 초소형/고정밀 탄속 측정장치 개발)

  • 채제욱;김종천;최의중;이영신
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.22-28
    • /
    • 2003
  • In the conventional weapon system, such as gun and small arms, it Is a general trend that for maximization of its performance and enhancement of its effectiveness, the firing control system(FCS) is developed and applied with the guns and small arms in the world. The FCS of the small arms for infantry man is composed of a few of sensors for acquisition of input data of FCS, such as range measurement, position sensing of weapon, temperature, etc., computer, displayer and power pack, and also the air burst munition is developed in parallel for the maximization of FCS's effectiveness. Since the flight time setting fuze for the air burst munition is adapted for next me, the measuring device of the muzzle velocity is needed to overcome the variation of muzzle velocity due to producing procedures and the differences of the using temperatures and so maintain the burst position accuracy This paper contained the technical information on the development of the measuring device of muzzle velocity, which designed in compact & light weight configuration with reliability and accuracy.

Algorithm Development for Improving Output Characteristics of Thyristor Dual Converter with AC Input Voltage Variation (교류 입력 전압 변동에 따른 사이리스터 듀얼 컨버터의 출력 특성 개선을 위한 알고리즘 개발)

  • Kim, Sung-An;Han, Sung-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1437-1443
    • /
    • 2017
  • Electric energy is consumed or regenerated according to an operation of electric rail cars in urban railway power substations. A thyristor dual converter system is used to deal with the electric energy. Since the AC input voltage of power substations is $22.9kV{\pm}10%$, the magnitude of the AC voltage fluctuates according to load conditions, so the secondary side voltage of the DDY transformer also fluctuates. In the thyristor dual converter, the response characteristics of the DC output voltage and the DC output current are changed based on an initial firing angle in the cross mode conversion between the forward mode and the reverse mode. Therefore, this paper proposes the initial firing angle tracking algorithm considering fluctuation of the AC input voltage. The effectiveness of the proposed algorithm is verified by a simulation compared with the conventional algorithm.

Behavior Control of Autonomous Mobile Robots using ECANS1 (진화하는 셀룰라 오토마타를 이용한 자율이동로봇군의 행동제어)

  • Lee, Dong-Wook;Chung, Young-June;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2183-2185
    • /
    • 1998
  • In this paper, we propose a method of designing neural networks using biological inspired developmental and evolutionary concept. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual have adapted itself to the environment by evolution. Ontogeny of organism is embodied in cellular automata and phylogeny of species is realized by evolutionary algorithms. The connection among cells is determined by a rule of cellular automata. In order to obtain the best neural networks in the environment, we evolve the arrangement of initial cells. The cell, that is neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to navigation problem of robot.

  • PDF

The Factor Localization for Air-to-Ground Weapon Delivery Error Using Fault Localization (결함위치추정 기법을 이용한 공대지 항공무장의 오류 요인 분석)

  • Kim, Jae-Hwan;Choi, Kyung-Hee;Chung, Gi-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.551-560
    • /
    • 2010
  • In this paper, we suggest a localization method of factors affecting the accuracy of Air-to-Ground weapon delivery. The proposed method, called FBEL(Factor-Based Error Localization), is based on the fault localization technique widely utilized in the realm of software engineering field. FBEL localizes the major factors affecting the performance of weapon delivery. To analyze the effectiveness and the applicability of FBEL, we applied FBEL to real firing data and got the major factors caused the errors. We expect that the method could contribute to improve the quality of weapon delivery system. We also expect that it may aid improvement of pilot capability greatly, if it is applied to pilot firing training.

Extraction of Fuzzy Rules with Importance for Classifier Design

  • Pal, Kuhu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.725-730
    • /
    • 1998
  • Recently we extended the fuzzy model for rule based systems incorporating an importance factor for each rule. The model permits for both unrestricted as well as non-negative importance factors. We use this extended model to design a fuzzy rule based classifier system which uses both the firing strength of the rule and the importance factor to decide the class label. The effectiveness of the scheme is established using several data sets.

  • PDF