• Title/Summary/Keyword: Fires

Search Result 1,216, Processing Time 0.029 seconds

Data Mining based Forest Fires Prediction Models using Meteorological Data (기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.521-529
    • /
    • 2020
  • Forest fires are one of the most important environmental risks that have adverse effects on many aspects of life, such as the economy, environment, and health. The early detection, quick prediction, and rapid response of forest fires can play an essential role in saving property and life from forest fire risks. For the rapid discovery of forest fires, there is a method using meteorological data obtained from local sensors installed in each area by the Meteorological Agency. Meteorological conditions (e.g., temperature, wind) influence forest fires. This study evaluated a Data Mining (DM) approach to predict the burned area of forest fires. Five DM models, e.g., Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), Decision Tree (DT), Random Forests (RF), and Deep Neural Network (DNN), and four feature selection setups (using spatial, temporal, and weather attributes), were tested on recent real-world data collected from Gyeonggi-do area over the last five years. As a result of the experiment, a DNN model using only meteorological data showed the best performance. The proposed model was more effective in predicting the burned area of small forest fires, which are more frequent. This knowledge derived from the proposed prediction model is particularly useful for improving firefighting resource management.

Forest Fire Risk Analysis Using a Grid System Based on Cases of Wildfire Damage in the East Coast of Korean Peninsula (동해안 산불피해 사례기반 격자체계를 활용한 산불위험분석)

  • Kuyoon Kim ;Miran Lee;Chang Jae Kwak;Jihye Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.785-798
    • /
    • 2023
  • Recently, forest fires have become frequent due to climate change, and the size of forest fires is also increasing. Forest fires in Korea continue to cause more than 100 ha of forest fire damage every year. It was found that 90% of the large-scale wildfires that occurred in Gangwon-do over the past five years were concentrated in the east coast area. The east coast area has a climate vulnerable to forest fires such as dry air and intermediate wind, and forest conditions of coniferous forests. In this regard, studies related to various forest fire analysis, such as predicting the risk of forest fires and calculating the risk of forest fires, are being promoted. There are many studies related to risk analysis for forest areas in consideration of weather and forest-related factors, but studies that have conducted risk analysis for forest-friendly areas are still insufficient. Management of forest adjacent areas is important for the protection of human life and property. Forest-adjacent houses and facilities are greatly threatened by forest fires. Therefore, in this study, a grid-based forest fire-related disaster risk map was created using factors affected by forest-neighboring areas using national branch numbers, and differences in risk ratings were compared for forest areas and areas adjacent to forests based on Gangneung forest fire cases.

A Study on Smoke Movement in Room Fires with Various Pool Fire Location

  • Jeong, Jin-Yong;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1485-1496
    • /
    • 2002
  • In order to investigate the fire-induced smoke movement in a three-dimensional room with an open door, numerical and experimental study was performed. The center, wall, and corner fire plumes for various sized fires were studied experimentally in a rectangular pool fire using methanol as a fuel. The numerical results from a self-developed SMEP (Smoke Movement Estimating Program) field model were compared with experimental results obtained in this and from literature. Comparisons of SMEP and experimental results have shown reasonable agreement. As the fire strength became larger for the center fires, the air mass flow rate in the door, average hot layer temperature, flame angle and mean flame height were observed to increase but the doorway-neutral-planeheight and the steady-state time were observed to decrease. Also as the wall effect became larger in room fires, the hot layer temperature, mean flame height, doorway-neutral-planeheight and steady-state time were observed to increase. In the egress point of view considering the smoke filling time and the early spread of plume in the room space, the results of the center fire appeared to be more dangerous as compared with the wall and the corner fire. Thus it is necessary to consider the wall effect as an important factor in designing efficient fire protection systems.

The changes of soil salinity in the Pinus densiflora forest after seawater spread using a fire-fight helicopter

  • Park, Jeong Soo;Koo, Kyu-Sang;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.443-450
    • /
    • 2015
  • The east coast of the Korean Peninsula is susceptible to fires because of the low rainfall in winter and spring, and large forest fires have occurred in this area. Lack of fresh water to combat fires has hampered efforts to prevent widespread forest fires in this region. Seawater has not been used as a suppressant because of possible detrimental effects of salt. We investigated the mobility of saline water in the forest soil and their effect on the microbial activity. Using a fire-fighting helicopter, seawater was sprayed over three plots (50 × 100 m) located on the eastern slope of the Baekdu mountain range in South Korea in April, 2011. We sampled the soil in April 4, May 20, and August 5 to determine the amount of salt that remained in the soil. The electrical conductivity value of the soil decreased to <400 μS/cm over a 1-month period. Approximately, four months after the application of seawater, the electrical conductivity value and Na+ content in all treatment plots did not significantly differ to those of the control plot, and total microbial activity also recovered to that of the control. Our results indicate that the amount of rainfall, soil physical-chemical properties, and topological factors may be a critical factor determining the mobility of saline water in forest soil.

A Study on the Transient State Characteristics of TFR-8 Cable caused by Over Current (과전류에 의한 TFR-8 케이블의 과도상태 특성에 관한 연구)

  • Kim, Byeong-Jo;Kim, Jae-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • The incidence of fires caused by electrical factors has increased with the growth in domestic electrical consumption. According to the national fire data system of national emergency management agency, electrical fires accounted for 20% of all domestic fires in the last 10 years. Electrical fires are mainly caused by short circuit, leakage current, defect in an electrical equipment, over load, utility fault, etc. The fault current can be several times larger than the nominal current, thereby exceeding the rated current of cable. Consequently, the cable conductor, typically copper wire, heats up to a temperature that ignites surrounding combustibles. This paper describes the transient characteristics of the 0.6/1kV, TFR-8 cable have been investigated, and analyzed under the over current conditions for reduce the risk of electrical fire by experimental and FEM analysis. The experimental and FEM(Finite Element Method) analysis results of temperature and resistance variation according to the over current in copper wires were analyzed. The experimental results coincide well with the FEM analysis.

Numerical Study on the Validity of Scaling Law for Compartment Fires (구획 화재의 상사 법칙 유효성에 관한 수치해석 연구)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2014
  • In this study, to assess the validity of scaling law which was based on the ventilation factor and utilized in fields of compartment fires, numerical simulations were conducted on full- and 2/5 reduced-scale compartment fires using FDS and simulation results were compared with the previously published experimental data. The numerical modeling used in this study was verified by comparing the predicted temperature at several points of the upper layer with the experiment data. Temperature and concentration distribution inside of compartments and velocity profile at door of compartment are analyzed to assess the validity of scaling law. Comparison between the predicted results on the full- and reduced-scale compartments shows good agreements on the inner compartment flow patterns, outflowing flame patterns from the compartments, and vertical temperature distributions.

Electrical Fire Cause Diagnosis System based on Fuzzy Inference

  • Lee, Jong-Ho;Kim, Doo-Hyun
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.12-17
    • /
    • 2005
  • This paper aims at the development of an knowledge base for an electrical fire cause diagnosis system using the entity relation database. The relation database which provides a very simple but powerful way of representing data is widely used. The system focused on database construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. In order to store and access to the information concerned with electrical fires, the key index items which identify electrical fires uniquely are derived out. The knowledge base consists of a case base which contains information from the past fires and a rule base with rules from expertise. To implement the knowledge base, Access 2000, one of DB development tools under windows environment and Visual Basic 6.0 are used as a DB building tool. For the reasoning technique, a mixed reasoning approach of a case based inference and a rule based inference has been adopted. Knowledge-based reasoning could present the cause of a newly occurred fire to be diagnosed by searching the knowledge base for reasonable matching. The knowledge-based database has not only searching functions with multiple attributes by using the collected various information(such as fire evidence, structure, and weather of a fire scene), but also more improved diagnosis functions which can be easily wed for the electrical fire cause diagnosis system.

Reliability Assessment of Forest Fire on EHV Polymer Insulator Strings (송전용 폴리머애자의 산불 영향 신뢰성 평가)

  • Min, Byeong-Wook;Shin, Tai-Woo;Choi, In-Hyuk;Choi, Han-Yeol;Park, Jae-Ung;Yu, Kun-Yang
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.436-437
    • /
    • 2006
  • Porcelain insulators have generally been used in Korea but polymer insulators which are superior in that they are light weight, explosion proof, impact proof, economical with construction characteristics, have been in use for the 154kV transmission line since 1999 following a worldwide trend towards the reduced weight, simplification and compact usage of new material insulators. However there have been approximately 500 cases of forest fires in Korea, so the transmission lines that for the most part pass through mountainous areas have been highly effected and the highly polymerized compound polymer insulator has raised concern about reliability in cases of exposure to forest fires. Therefore for the reliability assessment of the effect of forest fires on polymer insulators, mechanical and electrical characteristics are analyzed by an artificial flare test device and transmission facility surrounding conditions along with forest fire characteristics are surveyed. In addition to this, actual 90kV energized transmission line was tested with an artificial forest fire and the expanded usage of polymer insulators is presented through the analysis of mechanical and electrical characteristics and physical properties, and a study on the influence of forest fires on polymer insulators.

  • PDF

Analysis of the Spatial Distribution for Forest Fire Areas using GSIS (GSIS에 의한 산불 피해 지점의 공간 분포 분석)

  • Yang, In-Tae;Yeu, Young-Geol;Choi, Seung-Pil;Kim, Eung-Nam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.93-100
    • /
    • 1999
  • Forest fires have been threats to natural resources, endangered species, properties and even to human lives. Efficient management of forest fires requires a complete understanding of the environmental and human related activities, as well as complicate spatial relationships among them. A geo-spatial information system(GSIS) is an appropriate method of being able to mapping and to analyze the spatial data for forest fires. Therefore, this study is to provide and classify the terrain, vegetation, life environment soil and geology factors, and to analyze spatial distribution for forest fire areas by applying the GSIS and the Remote Sensing technology. On the other hands, causes of increasing numbers of forest fires being occurred after In were assessed by comparing the normalized difference vegetation index((NDVI).

  • PDF

A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires Using a Zone Model (존 모델을 이용한 종류식 배연 터널 화재시 연기 거동에 대한 수치해석적 연구)

  • Kim, Hyun-Jeong;Roh, Jae-Seong;Kim, Dong-Hyeon;Jang, Yong-Jun;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1319-1324
    • /
    • 2007
  • Many researches have been performed to analyze the smoke movement in tunnel fires by using field model. Recently, FDS(Fire Dynamics Simulator) v.4, which is one of the field model and developed from NIST(National Institute of Standards and Technology), is widely used. In tunnel fires, FDS can show detail results in local point, but it has difficulties in boundary condition and taking long computing time as the number of grid increases. So, there is a need to use alternative method for tunnel fire simulation. A zone model is different kind of CFD method and solves ordinary differential equation based on conservation and auxiliary equations. It shows good macroscopic view in less computing time compared to field model. In this study, therefore, to confirm the applicability of CFAST in tunnel fire analysis, numerical simulations using CFAST are conducted to analyze smoke movement in longitudinal ventilation reduced-scale tunnel fires. Then the results are compared with experimental results. The differences of temperature and critical velocity between numerical results and experimental data are over $30^{\circ}C$ and 0.9m/s, respectively. These values are out of error range. It shows that CFAST 6.0 is hard to be used for tunnel fire simulation.

  • PDF