• Title/Summary/Keyword: Fire-resistance

Search Result 1,031, Processing Time 0.027 seconds

Design of Fuse Elements of Current Sensing Type Protection Device for Portable Secondary Battery Protection System (휴대용 이차전지 보호 시스템용 전류 감지 동작형 보호소자의 퓨즈 가용체 설계)

  • Kang, Chang-Yong;Kim, Eun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1619-1625
    • /
    • 2018
  • Portable electronic devices secondary batteries can cause fire and explosion due to micro-current change in addition to the situation of short-circuit inrush current, safety can not be secured with a general operation limited current fuse. Therefore, in secondary battery, it is necessary for the protector to satisfy both the limit current type operation in the open-short-circuit inrush current and the current detection operation characteristic in the micro current change situation and for this operation, a fuse for the current detection type secondary battery protection circuit can be applied. The purpose of this study is to design a protection device that operates stably in the hazardous situation of small capacity secondary battery for portable electronic devices through the design of low melting fuse elements alloy of sensing type fuse and secures stability in abnormal current state. As a result of the experiment, I-T and V-T operation characteristics are satisfied in a the design of the alloy of the current sensing type self-contained low melting point fuse and the resistance of the heating resistor. It is confirmed that it can prevent accidents of short circuit over-current and micro current change of secondary battery.

Stability study on tenon-connected SHS and CFST columns in modular construction

  • Chen, Yisu;Hou, Chao;Peng, Jiahao
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.185-199
    • /
    • 2019
  • Modular construction is an emerging technology to accommodate the increasing restrictions in terms of construction period, energy efficiency and environmental impacts, since each structural module is prefabricated offsite beforehand and assembled onsite using industrialized techniques. However, some innate structural drawbacks of this innovative method are also distinct, such as connection tying inaccessibility, column instability and system robustness. This study aims to explore the theoretical and numerical stability analysis of a tenon-connected square hollow section (SHS) steel column to address the tying and stability issue in modular construction. Due to the excellent performance of composite structures in fire resistance and buckling prevention, concrete-filled steel tube (CFST) columns are also taken into account in the analysis to evaluate the feasibility of adopting composite sections in modular buildings. Characteristic equations with three variables, i.e., the length ratio, the bending stiffness ratio and the rotational stiffness ratio, are generated from the fourth-order governing differential equations. The rotational stiffness ratio is recognized as the most significant factor, with interval analysis conducted for its mechanical significance and domain. Numerical analysis using ABAQUS is conducted for validation of characteristic equations. Recommendations and instructions in predicting the buckling performance of both SHS and CFST columns are then proposed.

Experimental Research of Piece-Mold Casting: Gilt-Bronze Pensive Bodhisattva

  • Yun, Yong-Hyun;Cho, Nam-Chul;Doh, Jung-Mann
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.340-356
    • /
    • 2021
  • We have tried the experimental research of lost-wax casting to reconstruct Gilt-Bronze Pensive Bodhisattva; preliminary and reconstruction experiment based on ancient texts. Main object to reconstruct is Korean National Treasure No.83, Gilt-Bronze Pensive Bodhisattva (Maitreya), then we measure alloy ratio and casting method based on the scientific analysis. Other impurities were removed from the base metal components(copper : tin : lead) and their ratio was set to 95.5 : 6.5 : 3 where the ratios for tin and lead were increased by 2.5% each. The piece-mold casting method was used, and piece-mold casting experiments were carried out twice in this study but supplementary research on piece-mold casting was necessary. The microstructure was confirmed to be typical cast microstructure and the component analysis result was similar to that of the prior study. Analysis of the chemical composition is confirmed to copper, tin, lead, and zinc, and the chemical composition of the matrix was 87.8%Cu-7.5%Sn-2.7%Pb-2.1%Zn, and similar to previous experimental research. Also resulted in the detection of small impurity in Zn. Analysis of the mould revealed that the mould was fabricated by adding quartz and organic matter for structural stability, fire resistance, and air permeability. We expect that our research will contribute to provide base data for advanced researches in future.

EMC/LVD Compatibility Evaluation of ITER AC/DC Converter Subrack by EN 61000 and IEC 61010 (ITER AC/DC Converter 서브랙의 EN 61000 및 IEC 61010에 의한 EMC/LVD 시험평가)

  • Shin, Hyun-Kook;Oh, Jong-Seok;Song, In-Ho;Suh, Jae-Hak;Choi, Jung-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.222-226
    • /
    • 2021
  • To comply with CE marking requirements, the electromagnetic compatibility (EMC) and low-voltage directive (LVD) tests are conducted on the sub-racks of International Thermonuclear Experimental Reactor (ITER) AC/DC converters and bypass switches. The EMC tests consist of a series of tests, including the electromagnetic interference test, the electromagnetic field immunity test, and the rapid transient burst immunity test. In the LVD test, the electric shock protection test, the xcessive temperature limit and heat resistance of equipment tests, and the fire spread prevention test are performed. This work presents and reviews the European Directive for EMC/LVD and introduces the methods of EMC and LVD tests for the sub-racks of AC/DC converters and bypass switches. It also evaluates the test method and results to meet the European Directive requirements for CE marking. The sub-racks of ITER AC/DC converters and bypass switches successfully pass the EMC and LVD tests.

Dyeing and Fastness Properties of Oak Veneer Dyed with Vinyl Sulfone Type Reactive Dyes (비닐술폰형 반응성 염료를 이용한 오크 무늬목의 염색성 및 견뢰도 특성)

  • Cho, Hang Sung;Shim, Euijin
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.234-240
    • /
    • 2022
  • Use of processed timber can help reduce environmental damage and the economic burden of resources (important problems with use of raw timber) and can meet the needs of various fields where the sensibility of raw timber is required. Veneer wood is positioned as a high-value-added product due to its luxury and beauty, and it is used in various fields as a building-related material, such as interior decoration, furniture, flooring, building interior materials, and lumber. Dyeing is necessary to enhance the aesthetic appearance of this pattern and to expand its use. Therefore, in this study, we compared and analyzed the dye ability of oak-patterned materials with reactive dyes, and evaluated their performance as interior materials. As a result, the oak pattern was dyed with 9 kinds of reactive dyes and a comparative analysis was performed. The most suitable conditions are 50℃, 2 hours, and 0.5% o.w.f. In addition, evaluating resilience to daylight, resilience to rubbing, fire resistance, and flame retardance, yielded results suitable for use as an interior material. In this study, the dyeability of veneer dyed under various conditions using reactive dyes was compared and analyzed the performance as an interior material was evaluated.

Effect of Filler on the Flow of Counter Flow Type Cooling Tower (충진재(Filler)가 대향류형(Counter Flow Type) 냉각탑 유동에 미치는 영향에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung;Jin, Cheol-Gyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.565-572
    • /
    • 2022
  • The white plume from the cooling tower can be generated by mixing between discharging hot and humid air and cold air outside. This causes various problems such as icing, traffic disturbances, and fire factors in the vicinity, moreover it can also damage the image of a company. Various methods can be used to prevent white plume, one of them is to install a heat exchanger at the outlet of the cooling tower so that the heat exchanger transfers as much heat as possible to lower the temperature. Therefore the air flow path in the cooling tower should be optimized. Installation of the filler can be used to make the air flow better, thus we investigate the effect of filler on the air flow using CFD method. The pressure and velocity profile in the cooling tower could be acquired by the calculations. The filler made the velocity of the air entering the heat exchanger uniform this was because high flow resistance of the filler suppresses the generation of eddy in the cooling tower. But the total air pressure drop increased about 2 times with filler because the pressure drop by the filler accounted for about 60% of the total pressure drop.

Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries (리튬금속과 고체전해질의 계면 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

Experimental Study About Properties of Limestone-calcined-clay Cement (LC3) Concrete Under High Temperature (석회석 소성 점토 시멘트(LC3) 페이스트의 고온 내화성능에 관한 연구)

  • Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.133-134
    • /
    • 2021
  • Limestone-calcined clay-Cement (LC3) concrete provides a solution for sustainability, durability, and profitability of concrete industry. This study shows experimental studies of the macro properties (residual compressive strength), the meso properties (mesoscopic images), and micro properties (thermogravimetric (TG) analysis, X-ray powder diffraction (XRD), FTIR spectra, Raman spectra, Mercury intrusion porosimetry, and SEM) of LC3 paste with various mixtures and at high elevated temperatures (20 ℃, 300 ℃, 550 ℃ and 900 ℃). We find (1) Regarding to macro properties, LC3 cementitious materials are at a disadvantage in compressive strength when the temperature is higher than 300 ℃. (2) Regarding to meso properties, when the temperature reached 550 ℃, all samples generated more meso cracks. (3) Regarding to micro properties, first, as the substitution amount increases, its CH content decreases significantly; second, at 900 ℃, for samples with calcined clay, a large amount of gehlenite crystalline phase was found; third, at elevated temperatures (20 ℃, 300 ℃, 550 ℃ and 900 ℃), there is a linear relationship between the residual compressive strength and the cumulative pore volume; fourth, at 900 ℃, a large amount of dicalcium silicate was generated, and damage cracks were more pronounced. The experimental results of this study are valuable of material design of fire resistance of LC3 concrete.

  • PDF

Fire resistance of hybrid fiber reinforced SCC: Effect of use of polyvinyl-alcohol or polypropylene with single and binary steel fiber

  • Kazim Turk;Ceren Kina;Esma Balalan
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • This study presents the experimental results performed to evaluate the effects of Polyvinyl-alcohol (PVA) and Polypropylene (PP) fibers on the fresh and residual mechanical properties of the hybrid fiber reinforced SCC before and after the exposure of 250℃, 500℃ and 750℃ temperatures. The compressive and splitting tensile strength, modulus of rupture (MOR), ultrasonic pulse velocity (UPV) as well as toughness and weight loss were investigated at different temperatures. PVA and PP fibers were added into SCC mixtures having only macro steel fiber and also having binary hybridization of both macro and micro steel fiber. The results showed that the use of micro steel fiber replaced by macro steel fiber improved the fresh and hardened properties compared to the use of only macro steel fiber. Moreover, it was emphasized that PVA or PP enhanced the residual flexural performance of SCC, generally, while it negatively influenced the workability, weight loss, UPV and the residual strengths with regards to the use of single steel fiber and binary steel fiber hybridization. Compared to the effect of synthetic fibers, PP had slightly more positive effect in the view of workability while PVA enhanced the residual mechanical properties more.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.