• Title/Summary/Keyword: Fire spread rate

Search Result 101, Processing Time 0.028 seconds

A Study on the improvement the efficiency of the evacuation of the ship's crews (선박 승무원의 피난 효율 향상에 관한 연구)

  • Kim, Won-Ouk;Kim, Jong-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.153-154
    • /
    • 2013
  • In this study, we used the program of three-dimensional analysis of fire for analyzing visibility of smoke flow and temperature of the accommodation area what is required for the analysis of survival of the crew. In particular, I would like to propose a method for reducing the flow rate performance in order to reduce the suffocation from the smoke of the majority of personal injury. Existing vessels are designed to close the fire door automatically when the fire alarm issued. When there is no crew that dared to escape, it can delay the spread of fire and smoke flow which is determined to be very useful to improve the survival rate of the crew. However, it can be fatal to the crew whose rooms are located on the inside of the fire door that has not completed the evacuation. In this study, we check the smoke flow rate and rate of temperature rise when crew open the fire door what is closed due to fire and compare to the structure of the blocking layer.

  • PDF

Experimental Study on the Flame Spread Characteristics under Reduced Atmospheric Pressures and Elevated Oxygen Concentrations (저기압 고산소 환경에서 화염 전파특성에 관한 실험적 연구)

  • Yang, Ho-Dong;Kwon, Hang-June;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.78-83
    • /
    • 2016
  • The characteristics of flame spread under similar atmospheric conditions to those inside the first stage of launch vehicles were investigated to provide fundamental knowledge to prevent fires and explosions of vehicles during launching operations. To this end, the rate of flame spread on the solid fuel was measured at elevated oxygen concentrations and reduced atmospheric pressures. A 0.18 mm diameter optical fiber was used as a solid fuel. The experimental results indicated that elevated oxygen concentrations can increase the rate of flame spread while increasing the atmospheric pressures to 1 atm can lead to decreases in the rate of flame spread. The increases in the rate of flame spread with pressure is due mainly to reductions in the convective heat loss that are clarified through an analysis of the pressure dependence on the convective heat transfer coefficient.

A Fire Hazard Assessment of Interior Finish Materials (건물 내장재의 화재위험성 평가 방법)

  • 김운형
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.17-28
    • /
    • 1998
  • To propose a new fire hazard assessment criteria of interior finish materials, the properties and incident heat flux of interior finish materials in a compartment fires are investigated and compared by using flame spread model developed by Quintiere. The properties considered on which fire growth depend are including flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. ISO Room Corner Test(9705) is applied in the model and the time for total energy release rate to reach 1MW is examined. The results are compared for the 24 different materials tested by EUREFIC. Dimensionless parameter a, b and ${\gamma}$b are used to develope a new method in which fire hazard of interior finish materials can be classified resulting from correlation between b and flashover time. Results show that if b greater than about zero, flashover time in the ISO Room-Corner Test is principally proportional to ignition time only.

  • PDF

A Study on the Analysis of Fire Risk according to the Operation Scenario of Fire Safety Equipment (화재안전설비 작동 시나리오에 따른 화재위험분석에 관한 연구)

  • Jin, Seung-Hyeon;Koo, In-Hyuk;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.139-140
    • /
    • 2022
  • This study aims to present basic data for fire risk assessment. In the existing fire risk assessment, the operation of fire safety facilities is not considered. In addition, there is a lack of data on the fire growth rate to predict the spread of fire. Therefore, this study intends to build a fire scenario using fire statistics data. In addition, the fire growth rate is to be derived in consideration of the floor area of burnout and the cause of fire.

  • PDF

Flow Characteristics of Fire Whirl for Different Heat Release Rate (발열량의 차이에 따른 Fire Whirl의 유동특성)

  • Bae, Sung-Yong;Sung, Kun-Hyuk;Ryou, Hong-Sun;Hong, Ki-Bae;Kim, Dong-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.609-613
    • /
    • 2008
  • The fire whirl occurring by the instability of atmosphere is a rare phenomenon, but highly destructive because it has high inhalation and lift force, caused by the rotating velocity. And it is difficult to extinguish the fire, because of increment of the spread rate with the flame height. In this study, for investigation of the flow characteristic of fire whirl for various heat release rate, numerical analysis is performed in same conditions with experiments, using the FDS which is developed at NIST. For validating of the numerical study, the results are compared with the experiment. The result shows that the relation between the characteristic length and the ratio of circulation versus the buoyancy force is $z_f$/D$^{\ast}$ = 0.304(${\Omega}/{\alpha}$)^2 - 1.334${\Omega}/{\alpha}$ + 5.516.

  • PDF

An Analysis of False Alarm Threshold Value by Heat Detector Using Heat Release Rate (열방출률을 이용한 열감지기의 오동작 경계값 분석)

  • 홍성호;김두현
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.26-30
    • /
    • 2003
  • This paper presents a study on the analysis for false alarm of heat detector using HRR(Heat Release Rate). And it is represented to threshold value and domain of false alarm. The HRR threshold value of false alarm is calculated to use parameters obtained by small scale fire-experiment. The experiment is conducted to measure detector activation time and flame spread of wood cribs fire, etc. The results show that HRR threshold value of Fixed type detector is 20.24 kW and rate of rise type detector is 13.59 kW, respectively.

Feasibility Study on the Fire Scenario Design of a Couch Burning through a Fire Spread Model (화염 전파모델을 이용한 소파화재 설계화원구성의 적용성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.37-42
    • /
    • 2016
  • The present study has been performed to examine the feasibility of a flame spread model on the design fire scenario for fire risk analysis. Thermo-Gravimetric analysis and sample burning test were conducted to obtain the material properties of a single couch covered with synthetic leather material and a series of FDS calculations applying with the measured material properties were performed for different grid sizes. The overall fire growth characteristics predicted by the fire model were quite different from the results of a real scale fire test and the initial peak value of the HRR and total released energy showed the results within a 30% discrepancy for the computational grids used in the present study. The current model has some limitations in predicting the fire growth characteristics, such as fire growth rate and the time to the maximum HRR. This study shows that the fire model may be applicable to creating the design fire scenario through continuous model improvement and detailed material properties.

APPLICATIONS OF A MODEL TO COMPARE AFLAME SPREAD AND BEAT RELEASE PROPERTIES OF INFERIOR FINISH MATERIALS IN A COMPARTMENT

  • Kim, Woon-Hyung;James G. Quintiere
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.193-200
    • /
    • 1997
  • Flame spread and heat release properties and incident heat flux of interior materials subject to an igniter heat flux in a compartment are investigated and compared by using computer model. A comer fire ignition source is maintained for 10 minutes at 100 kw and subsequently increased to 300kw. In executing the model, base-line material properties are selected and one is changed for each run. Also 4 different igniter heat flux conditions and examined. Results are compared for the 12 different materials tested by the ISO Room Comer Test (9705). The time for total energy release rate to reach 1MW is examined. The parameters considered include flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. The model can show the importance of each property in causing fire growth on interior Hnish materials in a compartment. The effect of ignitor heat flux and material property effects were demonstrated by using dimensionless parameters a, b and Tb. Results show that for b greater than about zero, flashover time in the ISO Room-Corner test is principally proportional to ignition time and nothing more.

  • PDF

The Behavior Characteristics of the 2005 Yangyang Forest Fire (2005년 강원도 양양산불 행동 특성)

  • Lee Byung-Doo;Lee Si-Young;Chung Joo-Sang
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.1-6
    • /
    • 2005
  • To control forest fire effectively, it is necessary to understand forest fire behavior and relevance to forest fire environmental factors. In this paper, the behavior characteristics of the 2005 Yangyang forest fire were analyzed into the spread patterns and severity grades. The spread processes of the forest fire could be divided into two steps. At the first step, the fire ran fast to the east due to the strong west wind and then spreaded out in irregular direction. The maximum spread rate of the fire was 1.21km/hr and the mean was 0.65 km/hr. The result of the fire severity classification indicated that about $80\%$(1,110ha) of the whole study site was extremely burned and the remaining $15\%(211 ha)\;and\;5\%(61 ha)$ were damaged slightly and moderately respectively.

An Experimental Study on Smoke Spread Using a Reduced-scale Subway Building Model (지하역사 축소모델을 이용한 연기확산에 대한 실험적 연구)

  • Kim, Myung-Bae;Choi, Byung-Il
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • Smoke propagation for the Daegu Metro fire is reproduced by a reduced-scale model experiment. The three-story station building was modeled with 1/20-scale, and the tunnel connected to the platform was not completely modeled because of its length. To include the flow resistance the tunnel provides the mesh screens were used in the model. The fire scenario was selected based on the fire growth rate of the metro car seat where the fire initiated. The time when smoke arrived at each compartment in the station building was measured by thermocouples and visualization. Regarding fire ventilation, the air supply that has been accepted as conventional design in a subway metro building intensifies smoke spread. The results show that the whole building was filled with smoke in about 10 minutes in case of no ventilation.