• Title/Summary/Keyword: Fire smoke

Search Result 1,095, Processing Time 0.03 seconds

연기농도 계측용 광학식 미세입자 감지장치 개발

  • 김영재;김희식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.128-132
    • /
    • 1997
  • The conventional fire detection devices are operated after a processed fire phase, which are sensing only a high density of smoke level or high temperature heat. They are not so precision to detect a fire in the early phase to protect the facility from the fire. We need to develope a new high precision smoke detection system to keep expensive industial facilities most reliably from fire. A new optical precision smoke detection system was developed. It monitors very low level density of smoke psrticles in the air. It is operated continuously through many years without a stop or any malfunction. The developed precision smoke detection system will be installed in important industrial facilities,such as power plants, underground common tunnel,main control rooms,computer rooms etc.

  • PDF

Implementation of Image based Fire Detection System Using Convolution Neural Network (합성곱 신경망을 이용한 이미지 기반 화재 감지 시스템의 구현)

  • Bang, Sang-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.331-336
    • /
    • 2017
  • The need for early fire detection technology is increasing in order to prevent fire disasters. Sensor device detection for heat, smoke and fire is widely used to detect flame and smoke, but this system is limited by the factors of the sensor environment. To solve these problems, many image-based fire detection systems are being developed. In this paper, we implemented a system to detect fire and smoke from camera input images using a convolution neural network. Through the implemented system using the convolution neural network, a feature map is generated for the smoke image and the fire image, and learning for classifying the smoke and fire is performed on the generated feature map. Experimental results on various images show excellent effects for classifying smoke and fire.

PERFORMANCE EVALUATION OF PASSENGERS' EVACUATION FOR SMOKE-CONTROL MODES IN A SUBWAY STATION (지하역사 제연모드 승객피난 성능평가)

  • Park, Won-Hee;Chang, Hee-Chul;Jung, Woo-Sung;Lee, Han-Su
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.8-12
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by building EXODUS V.4.0.

Performance Evaluation of Passengers' Evacuation for Smoke-Control Modes in a Subway Station Based on CFD Results (전산열유체 해석결과를 이용한 지하역사 제연모드 승객피난 성능평가)

  • Park, Won-Hee;Jang, Yong-Jun;Lee, Han-Su;Chang, Hee-Chul;Lee, Duck-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.276-279
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by buildingEXODUS V 4.0.

  • PDF

Optical Properties for Smoke Particles of Fire Sources According to UL 268 (UL 268 화원에 의한 연기입자의 광학적 특성)

  • Jee, Seung-Wook;Lee, Jong-Hwa
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.9-13
    • /
    • 2014
  • This paper is basic study for development of the photoelectric-type smoke detector that is able to distinguish fire source as well as fire detection. For this subject, Light source and sensor which is normally used for the conventional smoke detector are assembled for the optical chamber. Using 3 type of the test fires (the paper fire, the wood fire, the flammable liquid fire) this paper attempts to find optical properties of each fire. These 3 type of fire are used in the testing of smoke detector according to UL 268 standard. As the result, there are disambiguated between the paper fire and the wood fire in scattering and reason of extinction in the flammable liquid fire is different from that of the paper and the wood fire.

A Numerical Study on the Smoke Behavior by Solar Radiation through Ceiling Glass in Atrium Fires

  • Jeong, Jin-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.117-128
    • /
    • 2002
  • This paper describes the smoke filling process of a fire field model based on a self-deve-loped SMEP (Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy production term. Also it solves the radiation equation using the discrete ordinates method. Compressibility is assumed and the perfect gas law is used. Comparison of the calculated upper-layer average tempera-ture and smoke layer clear height with the zone models has shown reasonable agreement. The zone models used are the CFAST and the NBTC one-room. For atrium fires with ceiling glass the ceiling heat flux by solar heat causes a high smoke temperature near the ceiling. However, it has no effect on the smoke movement such as the smoke layer clear heights that are important in fire safety. In conclusion, the smoke layer clear heights that are important in evacuation activity except the early of a fire were not as sensitive as the smoke layer tem-perature to the nature of ceiling heat flux condition. Thus, a fire sensor in atrium with ceiling glass has to consider these phenomena.

A Study on the Efficiency of Smoke Barriers in the Subway Station (지하역사 제연경계벽의 제연 효용성에 관한 연구)

  • Kim, Bum-Kyu;Kim, Hee-Young;Lee, Sung-Mi;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.204-208
    • /
    • 2008
  • Casualties Damage from Smoke is very serious consequence. Especially, Damage from smoke in in the Subway Station is the terrible result. Smoke from the fire in the Subway Station that evacuation route on the path and the sight of refugees caused by serious traffic problems. Accordingly, A study on Smoke barriers of smoke systems take into considerations relate to effects depending on wind velocity speed of the piston effect come into the retarding effect of smoke control in smoke barriers. As a result of modeling, According to increasing of Velocity in the platform which installed smoke barriers were been on the increase spreading quantity of smoke in the right direction of upstairs however, In contrast spreading quantity of smoke in the left direction on the upstairs were been on the decrease.

  • PDF

Smoke Hazard Assessment of Cypress Wood Coated with Boron/Silicon Sol Compounds (붕소/실리콘 졸 화합물로 도포된 편백 목재의 연기유해성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this study, boron/silicon sol compounds were applied to wood for construction and durable materials, and fire risks were investigated in terms of smoke performance index (SPI), smoke growth index (SGI), and smoke intensity (SI). The compound was synthesized by reacting tetraethoxyorthosilicate with boric acid and boronic acid derivatives. Smoke characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment for cypress wood. The fire intensity fixed the external heat flux at 50 kW/㎡. The smoke performance index measured after the combustion reaction increased between 13.4% and 126.7% compared with cypress wood. The fire risk due to the smoke performance index decreased in the order of cypress, phenylboronic acid/silicon sol (PBA/Si), (2-methylpropyl) boronic acid/silicon sol (IBBA/Si), boric acid/silicon sol (BA/Si). The smoke growth index decreased between 12.0% and 57.5% compared to the base specimen. The risk of fire caused by the smoke growth index decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si. The fire risk due to smoke intensity decreased between 3.2% and 57.8%, and in the order of cypress, PBA/Si, IBBA/Si, BA/Si. COpeak concentrations ranged between 85 and 93 ppm, and decreased between 37% and 43% compared to the base specimen. A comprehensive assessment of the fire risk on smoke hazards decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si.

Numerical Simulation on Smoke Movement in Multi-Compartment Enclosure Fires under Pressurized Air Supply Conditions (급기가압 조건에서 복합 구획 공간 화재의 연기 거동에 대한 수치해석 연구)

  • Ko, Gwon Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.15-21
    • /
    • 2018
  • This study examined the flow characteristics of fire smoke under pressurized air ventilation conditions by carrying out fire simulations on multi-compartment enclosure, including room, ancillary room and stair case. Fire simulations were conducted for the air-leakage test facility, which was constructed to measure the effective leakage area and aimed to improve the understandings of fire and smoke movement by analyzing the overall behaviors of fire smoke flow and pressure distributions of each compartment. The simulation results showed that the heat release rate of the fires was controlled sensitively by the amount of air supplied by the ventilation system. An analysis of the velocity distributions between the room and ancillary room showed that fire smoke could be leaked to the ancillary room through the upper layer of the door, even under pressurized air supply conditions. From these results, it was confirmed that the fire size and spatial characteristics should be considered for the design and application of a smoke control system by a pressurized air supply.

A transient CFD simulation of ventilation system operation for smoke control in a subway station equipped with a Platform Screen Door(PSD) when a train under fire is approaching the station (화재열차의 역사 접근 시 PSD가 설치된 역사 제연을 위한 환기장치 운전 비정상상태 해석)

  • Shin, Kyu-Ho;Hur, Nahm-Keon;Won, Chan-Shik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.269-272
    • /
    • 2006
  • The heat and smoke which generated by subway under fire is one of the most harmful factor in air tighten underground station. To prevent this, Trackway Exhaust System(TES) can be used. The heat released from the train running in the tunnel raises the temperature at the platform and the trackway, and thus proper ventilation system is required for comfortable underground environment. When the fire is occurred, TES is operated as smoke exhaust mode from normal ventilation mode. In the present study, the subway station which is one of the line number 9 in Seoul subway is modeled, and fired situation is simulated with several ventilation mode of ventilation system in trackway. For this simulation whole station is modeled. Non steady state 3D simulation which considered train under fire is entering to the station is performed. Temperature and smoke distribution in platform and trackway are compared. To represent heat by fire, heat flux was given to the fired carriage, also to describe smoke by fire, concentration of CO is represented. As the result of present study, temperature and smoke distribution is different as the method of ventilation in trackway and platform is changed. In over side of trackway, the fan must be operated as exhaust mode for efficient elimination of heat and smoke, and supply mode of fan operation in under side shows better distribution of heat and smoke. The ventilation system which is changed from ventilation mode to exhaust mode can be applied to control heat and smoke under fire.

  • PDF